22 research outputs found

    Actin: its cumbersome pilgrimage through cellular compartments

    Get PDF
    In this article, we follow the history of one of the most abundant, most intensely studied proteins of the eukaryotic cells: actin. We report on hallmarks of its discovery, its structural and functional characterization and localization over time, and point to present days’ knowledge on its position as a member of a large family. We focus on the rather puzzling number of diverse functions as proposed for actin as a dual compartment protein. Finally, we venture on some speculations as to its origin

    Epitope Structure of the Carbohydrate Recognition Domain of Asialoglycoprotein Receptor to a Monoclonal Antibody Revealed by High-Resolution Proteolytic Excision Mass Spectrometry

    Full text link
    Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as entry site into hepatocytes by hepatitis A and B virus, and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LCMS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of 2 intra-molecular disulfide bridges (7 Cys residues), and a Cysmercaptoethanol adduct formed by treatment with ß-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cysalkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide activated Sepharose. Epitope- excision and - extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides, (5-16) and (17-23) which showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody

    Oxidative protein labeling in mass-spectrometry-based proteomics

    Get PDF
    Oxidation of proteins and peptides is a common phenomenon, and can be employed as a labeling technique for mass-spectrometry-based proteomics. Nonspecific oxidative labeling methods can modify almost any amino acid residue in a protein or only surface-exposed regions. Specific agents may label reactive functional groups in amino acids, primarily cysteine, methionine, tyrosine, and tryptophan. Nonspecific radical intermediates (reactive oxygen, nitrogen, or halogen species) can be produced by chemical, photochemical, electrochemical, or enzymatic methods. More targeted oxidation can be achieved by chemical reagents but also by direct electrochemical oxidation, which opens the way to instrumental labeling methods. Oxidative labeling of amino acids in the context of liquid chromatography(LC)–mass spectrometry (MS) based proteomics allows for differential LC separation, improved MS ionization, and label-specific fragmentation and detection. Oxidation of proteins can create new reactive groups which are useful for secondary, more conventional derivatization reactions with, e.g., fluorescent labels. This review summarizes reactions of oxidizing agents with peptides and proteins, the corresponding methodologies and instrumentation, and the major, innovative applications of oxidative protein labeling described in selected literature from the last decade

    Binding of a natural anthocyanin inhibitor to influenza neuraminidase by mass spectrometry

    No full text
    The binding of a natural anthocyanin to influenza neuraminidase has been studied employing mass spectrometry and molecular docking. Derived from a black elderberry extract, cyanidin-3-sambubiocide has been found to be a potent inhibitor of sialidase activity. This study reveals the molecular basis for its activity for the first time. The anthocyanin is shown by parallel experimental and computational approaches to bind in the so-called 430-cavity in the vicinity of neuraminidase residues 356-364 and 395-432. Since this antiviral compound binds remote from Asp 151 and Glu 119, two residues known to regulate neuraminidase resistance, it provides the potential for the development of a new class of antivirals against the influenza virus without this susceptibility.No Full Tex

    FluTyper-an algorithm for automated typing and subtyping of the influenza virus from high resolution mass spectral data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High resolution mass spectrometry has been employed to rapidly and accurately type and subtype influenza viruses. The detection of signature peptides with unique theoretical masses enables the unequivocal assignment of the type and subtype of a given strain. This analysis has, to date, required the manual inspection of mass spectra of whole virus and antigen digests.</p> <p>Results</p> <p>A computer algorithm, FluTyper, has been designed and implemented to achieve the automated analysis of MALDI mass spectra recorded for proteolytic digests of the whole influenza virus and antigens. FluTyper incorporates the use of established signature peptides and newly developed naïve Bayes classifiers for four common influenza antigens, hemagglutinin, neuraminidase, nucleoprotein, and matrix protein 1, to type and subtype the influenza virus based on their detection within proteolytic peptide mass maps. Theoretical and experimental testing of the classifiers demonstrates their applicability at protein coverage rates normally achievable in mass mapping experiments. The application of FluTyper to whole virus and antigen digests of a range of different strains of the influenza virus is demonstrated.</p> <p>Conclusions</p> <p>FluTyper algorithm facilitates the rapid and automated typing and subtyping of the influenza virus from mass spectral data. The newly developed naïve Bayes classifiers increase the confidence of influenza virus subtyping, especially where signature peptides are not detected. FluTyper is expected to popularize the use of mass spectrometry to characterize influenza viruses.</p

    Reliable Determination of Site-Specific In Vivo Protein N-Glycosylation Based on Collision-Induced MS/MS and Chromatographic Retention Time

    No full text
    Site-specific glycopeptide mapping for simultaneous glycan and peptide characterization by MS is difficult because of the heterogeneity and diversity of glycosylation in proteins and the lack of complete fragmentation information for either peptides or glycans with current fragmentation technologies. Indeed, multiple peptide and glycan combinations can readily match the same mass of glycopeptides even with mass errors less than 5 ppm providing considerably ambiguity and analysis of complex mixtures of glycopeptides becomes quite challenging in the case of large proteins. Here we report a novel strategy to reliably determine site-specific N-glycosylation mapping by combining collision-induced dissociation (CID)-only fragmentation with chromatographic retention times of glycopeptides. This approach leverages an experimental pipeline with parallel analysis of glyco- and deglycopeptides. As the test case we chose ABCA4, a large integral membrane protein with 16 predicted sites for N-glycosylation. Taking advantage of CID features such as high scan speed and high intensity of fragment ions together combined with the retention times of glycopeptides to conclusively identify the non glycolytic peptide from which the glycopeptide was derived, we obtained virtually complete information about glycan compositions and peptide sequences, as well as the N-glycosylation site occupancy and relative abundances of each glycoform at specific sites for ABCA4. The challenges provided by this example provide guidance in analyzing complex relatively pure glycoproteins and potentially even more complex glycoprotein mixtures
    corecore