11,606 research outputs found
Energy quantization in solution-processed layers of indium oxide and their application in resonant tunneling diodes
\u3cp\u3eThe formation of quantized energy states in ultrathin layers of indium oxide (In\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e) grown via spin coating and thermally annealed at 200°C in air is studied. Optical absorption measurements reveal a characteristic widening of the optical band gap with reducing In\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e layer thickness from ≈43 to ≈3 nm in agreement with theoretical predictions for an infinite quantum well. Through sequential deposition of In\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e and gallium oxide (Ga\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e) layers, superlattice-like structures with controlled dimensionality and spatially varying conduction band characteristics are demonstrated. This simple method is then explored for the fabrication of functional double-barrier resonant tunneling diodes. Nanoscale current mapping analysis using conductive atomic force microscopy reveals that resonant tunneling is not uniform but localized in specific regions of the apparent device area. The latter observation is attributed to variation in the layer(s) thickness of the In\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e quantum well and/or the Ga\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e barrier layers. Despite the nonidealities, the tremendous potential of solution-processable oxide semiconductors for the development of quantum effect devices that have so far been demonstrated only via sophisticated growth techniques is demonstrated.\u3c/p\u3
Ordered Information Systems and Graph Granulation
The concept of an Information System, as used in Rough Set theory, is extended to the case of a partially ordered universe equipped with a set of order preserving attributes. These information systems give rise to partitions of the universe where the set of equivalence classes is partially ordered. Such ordered partitions correspond to relations on the universe which are reflexive and transitive. This correspondence allows the definition of approximation operators for an ordered information system by using the concepts of opening and closing from mathematical morphology. A special case of partial orders are graphs and hypergraphs and these provide motivation for the need to consider approximations on partial orders
A 3-D vector magnetization model with interaction field
This paper presents a vector model of magnetization based on the three-dimensional (3-D) Stoner-Wohlfarth elemental operator. To account for the magnetic interactions between particles, a phenomenological mean-field approximation is employed. The paper also illustrates the numerical simulation results of the magnetization in 3-D. This model will be useful to simulate the magnetization process of complicated topology flux electromagnetic devices. © 2005 IEEE
A general electromagnetic field-circuit coupling method based on time-stepping finite element analysis for performance analysis of pulse-width modulated switching converters considering hysteresis effects
Considering the special characteristics existing in the pulse-width modulated (PWM) switching converter, a general method for the time-stepping finite element analysis based electromagnetic field coupling with its feeding circuit used in the analysis of PWM switching converter considering hysteresis effects is introduced in this paper. Comparing with the electromagnetic field-circuit indirect coupling method (ICM), the proposed method has overcome the drawback that the ICM cannot take the hysteresis effects into account. Compared with the electromagnetic field-circuit direct coupling method (DCM), the proposed method has the similar accuracy but higher efficiency. Furthermore, like the ICM, the proposed method also divides the system with higher state dimensions produced by the DCM into two subsystems with lower state dimensions; this may reduce the algorithm convergence problem which often happens in high dimensional systems. © 2008 American Institute of Physics
Two-dimensional universal conductance fluctuations and the electron-phonon interaction of topological surface states in Bi2Te2Se nanoribbons
The universal conductance fluctuations (UCFs), one of the most important
manifestations of mesoscopic electronic interference, have not yet been
demonstrated for the two-dimensional surface state of topological insulators
(TIs). Even if one delicately suppresses the bulk conductance by improving the
quality of TI crystals, the fluctuation of the bulk conductance still keeps
competitive and difficult to be separated from the desired UCFs of surface
carriers. Here we report on the experimental evidence of the UCFs of the
two-dimensional surface state in the bulk insulating Bi2Te2Se nanoribbons. The
solely-B\perp-dependent UCF is achieved and its temperature dependence is
investigated. The surface transport is further revealed by weak
antilocalizations. Such survived UCFs of the topological surface states result
from the limited dephasing length of the bulk carriers in ternary crystals. The
electron-phonon interaction is addressed as a secondary source of the surface
state dephasing based on the temperature-dependent scaling behavior
Robust optimization in HTS cable based on design for six sigma
The nonuniform ac current distribution among the multilayer conductors in a high-temperature superconducting (HTS) cable reduces the current capacity and increases the ac loss. Various numerical simulation techniques and optimization methods have been applied in structural optimization of HTS cables. While the existence of fluctuation in design variables or operation conditions has a great influence on the cable quality, in order to eliminate the effects of parameter perturbations in design and to improve the design efficiency, a robust optimization method based on design for six sigma (DFSS) is presented in this paper. The optimization results show that the proposed optimization procedure can not only achieve a uniform current distribution, but also improve significantly the reliability and robustness of the HTS cable quality, comparing with those by using the particle swarm optimization. © 2008 IEEE
Robust optimization of multilayer conductors of HTS AC cable using PSO and perturbation analysis
For a High Temperature Superconducting (HTS) cable, a non-uniform AC current distribution among the multilayer conductors gives rise to increased AC losses. To get a uniform current distribution among the multilayer conductors, a constrained optimization model is constructed with continuous and discrete variables, such as the winding angle, radius and the winding direction of each layer. Under the constraints of the mechanical properties and critical current of the tape, the Particle Swarm Optimization (PSO) algorithm is employed for structural parameter optimization in both warm and cold dielectric type HTS cables. A uniform current distribution among layers is realized by optimizing the structural parameters. The perturbation analysis is employed to evaluate the parameters after optimization. It is found that the robust stabilizations are different among the various optimal results. The PSO is proved to be a more powerful tool than the Genetic Algorithm (GA) for structural parameter optimization. © 2006 IEEE
Search algorithms as a framework for the optimization of drug combinations
Combination therapies are often needed for effective clinical outcomes in the
management of complex diseases, but presently they are generally based on
empirical clinical experience. Here we suggest a novel application of search
algorithms, originally developed for digital communication, modified to
optimize combinations of therapeutic interventions. In biological experiments
measuring the restoration of the decline with age in heart function and
exercise capacity in Drosophila melanogaster, we found that search algorithms
correctly identified optimal combinations of four drugs with only one third of
the tests performed in a fully factorial search. In experiments identifying
combinations of three doses of up to six drugs for selective killing of human
cancer cells, search algorithms resulted in a highly significant enrichment of
selective combinations compared with random searches. In simulations using a
network model of cell death, we found that the search algorithms identified the
optimal combinations of 6-9 interventions in 80-90% of tests, compared with
15-30% for an equivalent random search. These findings suggest that modified
search algorithms from information theory have the potential to enhance the
discovery of novel therapeutic drug combinations. This report also helps to
frame a biomedical problem that will benefit from an interdisciplinary effort
and suggests a general strategy for its solution.Comment: 36 pages, 10 figures, revised versio
Lower hybrid current drive and ion cyclotron range of frequencies heating experiments in H-mode plasmas in experimental advanced superconducting Tokomak
A
Deconstructing Weight Management Interventions for Young Adults: Looking Inside the Black Box of the EARLY Consortium Trials.
ObjectiveThe goal of the present study was to deconstruct the 17 treatment arms used in the Early Adult Reduction of weight through LifestYle (EARLY) weight management trials.MethodsIntervention materials were coded to reflect behavioral domains and behavior change techniques (BCTs) within those domains planned for each treatment arm. The analytical hierarchy process was employed to determine an emphasis profile of domains in each intervention.ResultsThe intervention arms used BCTs from all of the 16 domains, with an average of 29.3 BCTs per intervention arm. All 12 of the interventions included BCTs from the six domains of Goals and Planning, Feedback and Monitoring, Social Support, Shaping Knowledge, Natural Consequences, and Comparison of Outcomes; 11 of the 12 interventions shared 15 BCTs in common across those six domains.ConclusionsWeight management interventions are complex. The shared set of BCTs used in the EARLY trials may represent a core intervention that could be studied to determine the required emphases of BCTs and whether additional BCTs add to or detract from efficacy. Deconstructing interventions will aid in reproducibility and understanding of active ingredients
- …
