16 research outputs found

    Comparative Evaluation of Light-Trap Catches, Electric Motor Mosquito Catches and Human Biting Catches of Anopheles in the Three Gorges Reservoir

    Get PDF
    The mosquito sampling efficiency of light-trap catches and electric motor mosquito catches were compared with that of human biting catches in the Three Gorges Reservoir. There was consistency in the sampling efficiency between light-trap catches and human biting catches for Anopheles sinensis (r = 0.82, P<0.01) and light-trap catches were 1.52 (1.35–1.71) times that of human biting catches regardless of mosquito density (r = 0.33, P>0.01), while the correlation between electric motor mosquito catches and human biting catches was found to be not statistically significant (r = 0.43, P>0.01) and its sampling efficiency was below that of human biting catches. It is concluded that light-traps can be used as an alternative to human biting catches of Anopheles sinensis in the study area and is a promising tool for sampling malaria vector populations

    Evaluating Methods to Restore Amphibian Habitat in Fire-Suppressed Pine Flatwoods Wetlands

    No full text
    Although fire is recognized as an important disturbance in longleaf pine uplands of the southeastern US, less is known about the importance of fire or other disturbances in the wetlands embedded within this ecosystem. The reticulated flatwoods salamander (Ambystoma bishopi), a federally endangered species, and other rare and declining amphibians, are less likely to breed in low-quality wetlands with high canopy cover and low herbaceous groundcover that typically occur from fire exclusion. Fire rarely carries through these wetlands during winter because of the presence of standing water at this time of year. Our objective was to evaluate whether mechanical removal of the woody midstory could serve as a surrogate for fire, and create high-quality wetlands with moderate canopy cover and high herbaceous groundcover. We chose a series of high-quality (n = 4) and low-quality (n = 21) ephemeral wetlands for study. A subset of the low-quality wetlands were then treated mechanically and with herbicide (n = 8), burned (n = 4), or retained in a low-quality state (n = 7). Mechanical treatments reduced canopy cover (from 55.7 % to 41.4 %) to similar levels as high-quality sites (36.7 %); however, herbaceous groundcover did not increase (17.2 % post-treatment compared to 37.3 % at high-quality sites). Fire reduced the canopy cover (from 41.3 % to 33.0 %), and herbaceous groundcover was similar (33.2 % post treatment) to high-quality sites as of four months post burn. More time will be required to assess the response of herbaceous groundcover and whether mechanical methods can be used as a surrogate for fire to restore amphibian breeding habitat. Identifying surrogates for fire could add an important technique to our management toolbox.Aquatic Habitat Restoration and Enhancement program of the Florida Fish and Wildlife Conservation Commission; Natural Resources Branch of Eglin Air Force Base (Jackson Guard); Department of DefenseUnited States Department of Defense; Legacy Resource Management Program; Department of Fish and Wildlife Conservation at Virginia Tech; US Fish and Wildlife ServiceUS Fish & Wildlife Servic

    Sampling adult populations of anopheles mosquitoes

    No full text
    For the control and elimination of malaria, information on the local vector dynamics is essential. This information provides guidance on appropriate and timely deployment of vector control tools and their subsequent success. The data on the dynamics of local mosquito populations can be collected using many different Anopheles sampling methods. Dependent on the objectives, resources, time, and local environment, different traps and methods can be chosen. This chapter describes the sampling of adult populations, focusing on the important preparatory stages and some of the widely used sampling methods. The trapping methods discussed in this chapter are the human landing catch, human-baited net trap, animal landing catch, animal-baited net trap, CDC miniature light trap, Biogents Suna trap, peripheral net collection, pyrethrum collection, exit/entry trap, and resting shelter. For optimal deployment in the field, a step-by-step description of the sampling methods is given.</p
    corecore