584 research outputs found

    Repeated exposure to socioeconomic disadvantage and health selection as life course pathways to mid-life depressive and anxiety disorders

    Get PDF
    The biomedical examination was funded by Medical Research Council [G0000934], awarded under the Health of the Public initiative. Charlotte Clark is supported by an Engineering and Physical Sciences Research Fellowship. Bryan Rodgers is supported by Research Fellowships Nos 148948 and 366758 and by Program Grant No. 179805 from the National Health and Medical Research Council of Australia. Research at the Institute of Child Health and Great Ormond Street Hospital for Children NHS Trust benefits from R&D funding received from the NHS Executive

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Molecular epidemiology of clinical isolates of Pseudomonas aeruginosa isolated from horses in Ireland

    Get PDF
    Clinical isolates (n = 63) of Pseudomonas aeruginosa obtained from various sites in 63 horses were compared using ERIC2 RAPD PCR to determine their genetic relatedness. Resulting banding patterns (n = 24 genotypes) showed a high degree of genetic heterogeneity amongst all isolates examined, indicating a relative non-clonal relationship between isolates from these patients, employing this genotyping technique. This study characterised 63 clinical isolates into 24 distinct genotypes, with the largest cluster (genotype E) accounting for 10/63 (15.9%) of the isolates. ERIC2 RAPD PCR proved to be a highly discriminatory molecular typing tool of P. aeruginosa in isolates recovered from horses. With the adoption of several controls to aid reproducibility, this technique may be useful as an alternative to PFGE, particularly in epidemiological investigations of outbreaks where speed may be a significant parameter. This is the first report of clonal heterogeneity amongst P. aeruginosa from horses and demonstrated that ERIC RAPD PCR is a rapid method for the examination of this species in horses, which may be useful in outbreak analysis

    Hydrokinetic Turbine Effects on Fish Swimming Behaviour

    Get PDF
    Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms-1. The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts

    Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption.

    Get PDF
    Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to 91 462 coffee consumers of European ancestry with top single-nucleotide polymorphisms (SNPs) followed-up in ~30 062 and 7964 coffee consumers of European and African-American ancestry, respectively. Studies from both stages were combined in a trans-ethnic meta-analysis. Confirmed loci were examined for putative functional and biological relevance. Eight loci, including six novel loci, met GW significance (log10Bayes factor (BF)>5.64) with per-allele effect sizes of 0.03-0.14 cups per day. Six are located in or near genes potentially involved in pharmacokinetics (ABCG2, AHR, POR and CYP1A2) and pharmacodynamics (BDNF and SLC6A4) of caffeine. Two map to GCKR and MLXIPL genes related to metabolic traits but lacking known roles in coffee consumption. Enhancer and promoter histone marks populate the regions of many confirmed loci and several potential regulatory SNPs are highly correlated with the lead SNP of each. SNP alleles near GCKR, MLXIPL, BDNF and CYP1A2 that were associated with higher coffee consumption have previously been associated with smoking initiation, higher adiposity and fasting insulin and glucose but lower blood pressure and favorable lipid, inflammatory and liver enzyme profiles (P<5 × 10-8).Our genetic findings among European and African-American adults reinforce the role of caffeine in mediating habitual coffee consumption and may point to molecular mechanisms underlying inter-individual variability in pharmacological and health effects of coffee

    Giving risk management culture a role in strategic planning

    Get PDF
    WOS: 000413939000023Strategically planned and implemented risk management paves the way for competitive advantage and a decisive edge for global financial institutions. The importance of risk management becomes more evident in financial instability periods. The failure of global financial institutions in the recent financial crisis revealed that firms with strong risk management and culture were more prepared and economically less damaged. As financial institutions have been criticized severely about risk management practices, it also becomes clear that most financial institutions have difficulties in developing a risk management culture. To have a clear understanding of risk management culture, the chapter aims to highlight a need to extend our understanding of risk management culture and how it can find a voice in the strategic planning of global financial institutions

    Multi-photon attenuation-compensated light-sheet fluorescence microscopy

    Get PDF
    We thank the UK Engineering and Physical Sciences Research Council for funding (grants EP/P030017/1 and EP/R004854/1), the European Union’s Horizon 2020 Framework Programme (H2020) (675512, BE-OPTICAL), the Danish Council for Independent Research (DFF FTP grant 7017-00021), and the Otto Mønsted Foundation (grant 19-70-0109).Attenuation of optical fields owing to scattering and absorption limits the penetration depth for imaging. Whilst aberration correction may be used, this is difficult to implement over a large field-of-view in heterogeneous tissue. Attenuation-compensation allows tailoring of the maximum lobe of a propagation-invariant light field and promises an increase in depth penetration for imaging. Here we show this promising approach may be implemented in multi-photon (two-photon) light-sheet fluorescence microscopy and, furthermore, can be achieved in a facile manner utilizing a graded neutral density filter, circumventing the need for complex beam shaping apparatus. A “gold standard” system utilizing a spatial light modulator for beam shaping is used to benchmark our implementation. The approach will open up enhanced depth penetration in light-sheet imaging to a wide range of end users.Publisher PDFPeer reviewe
    corecore