19 research outputs found

    Argon blocks the expression of locomotor sensitization to amphetamine through antagonism at the vesicular monoamine transporter-2 and mu-opioid receptor in the nucleus accumbens

    No full text
    LDM TEP COLLInternational audienceWe investigated the effects of the noble gas argon on the expression of locomotor sensitization to amphetamine and amphetamine-induced changes in dopamine release and mu-opioid neurotransmission in the nucleus accumbens. We found (1) argon blocked the increase in carrier-mediated dopamine release induced by amphetamine in brain slices, but, in contrast, potentiated the decrease in KCl-evoked dopamine release induced by amphetamine, thereby suggesting that argon inhibited the vesicular monoamine transporter-2; (2) argon blocked the expression of locomotor and mu-opioid neurotransmission sensitization induced by repeated amphetamine administration in a short-term model of sensitization in rats; (3) argon decreased the maximal number of binding sites and increased the dissociation constant of mu-receptors in membrane preparations, thereby indicating that argon is a mu-receptor antagonist; (4) argon blocked the expression of locomotor sensitization and context-dependent locomotor activity induced by repeated administration of amphetamine in a long-term model of sensitization. Taken together, these data indicate that argon could be of potential interest for treating drug addiction and dependence

    Argon Mediates Anti-Apoptotic Signaling and Neuroprotection via Inhibition of Toll-Like Receptor 2 and 4

    No full text
    Recently, the noble gas argon attracted significant attention due to its neuroprotective properties. However, the underlying molecular mechanism is still poorly understood. There is growing evidence that the extracellular regulated kinase 1/2 (ERK1/2) is involved in Argon´s protective effect. We hypothesized that argon mediates its protective effects via the upstream located toll-like receptors (TLRs) 2 and 4.Apoptosis in a human neuroblastoma cell line (SH-SY5Y) was induced using rotenone. Argon treatment was performed after induction of apoptosis with different concentrations (25, 50 and 75 Vol% in oxygen 21 Vol%, carbon dioxide and nitrogen) for 2 or 4 hours respectively. Apoptosis was analyzed using flow cytometry (annexin-V (AV)/propidiumiodide (PI)) staining, caspase-3 activity and caspase cleavage. TLR density on the cells' surface was analyzed using FACS and immunohistochemistry. Inhibition of TLR signaling and extracellular regulated kinase 1/2 (ERK1/2) were assessed by western blot, activity assays and FACS analysis.Argon 75 Vol% treatment abolished rotenone-induced apoptosis. This effect was attenuated dose- and time-dependently. Argon treatment was accompanied with a significant reduction of TLR2 and TLR4 receptor density and protein expression. Moreover, argon mediated increase in ERK1/2 phosphorylation was attenuated after inhibition of TLR signaling. ERK1/2 and TLR signaling inhibitors abolished the anti-apoptotic and cytoprotective effects of argon. Immunohistochemistry results strengthened these findings.These findings suggest that argon-mediated anti-apoptotic and neuroprotective effects are mediated via inhibition of TLR2 and TLR4
    corecore