38 research outputs found
The Nuts and Bolts of Einstein-Maxwell Solutions
We find new non-supersymmetric solutions of five-dimensional ungauged
supergravity coupled to two vector multiplets. The solutions are regular,
horizonless and have the same asymptotic charges as non-extremal charged black
holes. An essential ingredient in our construction is a four-dimensional
Euclidean base which is a solution to Einstein-Maxwell equations. We construct
stationary solutions based on the Euclidean dyonic Reissner-Nordstrom black
hole as well as a six-parameter family with a dyonic Kerr-Newman-NUT base.
These solutions can be viewed as compactifications of eleven-dimensional
supergravity on a six-torus and we discuss their brane interpretation.Comment: 29 pages, 3 figure
Excitations in the deformed D1D5 CFT
We perform some simple computations for the first order deformation of the
D1D5 CFT off its orbifold point. It had been shown earlier that under this
deformation the vacuum state changes to a squeezed state (with the further
action of a supercharge). We now start with states containing one or two
initial quanta and write down the corresponding states obtained under the
action of deformation operator. The result is relevant to the evolution of an
initial excitation in the CFT dual to the near extremal D1D5 black hole: when a
left and a right moving excitation collide in the CFT, the deformation operator
spreads their energy over a larger number of quanta, thus evolving the state
towards the infrared.Comment: 26 pages, Latex, 4 figure
Deforming the D1D5 CFT away from the orbifold point
The D1D5 brane bound state is believed to have an `orbifold point' in its
moduli space which is the analogue of the free Yang Mills theory for the D3
brane bound state. The supergravity geometry generated by D1 and D5 branes is
described by a different point in moduli space, and in moving towards this
point we have to deform the CFT by a marginal operator: the `twist' which links
together two copies of the CFT. In this paper we find the effect of this
deformation operator on the simplest physical state of the CFT -- the Ramond
vacuum. The twist deformation leads to a final state that is populated by pairs
of excitations like those in a squeezed state. We find the coefficients
characterizing the distribution of these particle pairs (for both bosons and
fermions) and thus write this final state in closed form.Comment: 30 pages, 4 figures, Late
New instability of non-extremal black holes: spitting out supertubes
We search for stable bound states of non-extremal rotating three-charge black
holes in five dimensions (Cvetic-Youm black holes) and supertubes. We do this
by studying the potential of supertube probes in the non-extremal black hole
background and find that generically the marginally bound state of the
supersymmetric limit becomes metastable and disappears with non-extremality
(higher temperature). However near extremality there is a range of parameters
allowing for stable bound states, which have lower energy than the
supertube-black hole merger. Angular momentum is crucial for this effect. We
use this setup in the D1-D5 decoupling limit to map a thermodynamic instability
of the CFT (a new phase which is entropically dominant over the black hole
phase) to a tunneling instability of the black hole towards the supertube-black
hole bound state. This generalizes the results of ArXiv:1108.0411 [hep-th],
which mapped an entropy enigma in the bulk to the dual CFT in a supersymmetric
setup.Comment: 28 pages + appendix, 15 figures, v2: References added, typos
corrected. Version published in JHE
Non-extremal Black Hole Microstates: Fuzzballs of Fire or Fuzzballs of Fuzz ?
We construct the first family of microstate geometries of near-extremal black
holes, by placing metastable supertubes inside certain scaling supersymmetric
smooth microstate geometries. These fuzzballs differ from the classical black
hole solution macroscopically at the horizon scale, and for certain probes the
fluctuations between various fuzzballs will be visible as thermal noise far
away from the horizon. We discuss whether these fuzzballs appear to infalling
observers as fuzzballs of fuzz or as fuzzballs of fire. The existence of these
solutions suggests that the singularity of non-extremal black holes is resolved
all the way to the outer horizon and this "backwards in time" singularity
resolution can shed light on the resolution of spacelike cosmological
singularities.Comment: 34 pages, 10 figure
Immediate and one-year outcome of patients presenting with Acute Coronary Syndrome complicated by stroke: Findings from the 2ndGulf Registry of Acute Coronary Events (Gulf RACE-2)
Hot Halos and Galactic Glasses
We initiate a systematic study of the state space of non-extremal, stationary
black hole bound states in four-dimensional N = 2 supergravity. Specifically,
we show that an exponential multitude of classically stable "halo" bound states
can be formed between large finite temperature D4-D0 black hole cores and much
smaller, arbitrarily charged black holes at the same temperature. We map out in
full the regions of existence for thermodynamically stable and metastable bound
states in terms of the core's charges and temperature, as well as the region of
stability of the core itself. Several features of these systems, such as a
macroscopic configurational entropy and exponential relaxation timescales, are
similar to those of the extended family of glasses. We draw parallels between
the two with a view toward understanding complex systems in fundamental
physics.Comment: 29 pages, 5 figures, v2: typos corrected, references adde
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
