300 research outputs found

    Big hearts, small hands:A focus group study exploring parental food portion behaviours

    Get PDF
    © The Author(s). 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: The development of healthy food portion sizes among families is deemed critical to childhood weight management; yet little is known about the interacting factors influencing parents' portion control behaviours. This study aimed to use two synergistic theoretical models of behaviour: the COM-B model (Capability, Opportunity, Motivation - Behaviour) and Theoretical Domains Framework (TDF) to identify a broad spectrum of theoretically derived influences on parents' portion control behaviours including examination of affective and habitual influences often excluded from prevailing theories of behaviour change. Methods: Six focus groups exploring family weight management comprised of one with caseworkers (n = 4), four with parents of overweight children (n = 14) and one with parents of healthy weight children (n = 8). A thematic analysis was performed across the dataset where the TDF/COM-B were used as coding frameworks. Results: To achieve the target behaviour, the behavioural analysis revealed the need for eliciting change in all three COM-B domains and nine associated TDF domains. Findings suggest parents' internal processes such as their emotional responses, habits and beliefs, along with social influences from partners and grandparents, and environmental influences relating to items such as household objects, interact to influence portion size behaviours within the home environment. Conclusion: This is the first study underpinned by COM-B/TDF frameworks applied to childhood weight management and provides new targets for intervention development and the opportunity for future research to explore the mediating and moderating effects of these variables on one another.Peer reviewedFinal Published versio

    Are we overestimating the permanence of cellulose triacetate cinematographic films? A mathematical model for the vinegar syndrome

    Get PDF
    Among the earliest signs of degradation in cellulose triacetate cinematographic films is the generation of acetic acid due to hydrolytic deacetylation of the polymer, marked by an increase in the acidity of the films and emissions of acetic acid leading to a characteristic vinegar odour. We propose a mathematical model for predicting the onset of the vinegar syndrome which accounts for the autocatalytic effect of acetic acid on the deacetylation reaction. Model parameters are estimated from previously published experimental data from other research groups. These show free acidity changes in cellulose triacetate films subjected to accelerated ageing at temperatures of 70–100 °C. The model is validated against a different set of previously published experimental data of cellulose triacetate films aged at 21 °C and 35 °C, at 20, 35 and 50% relative humidity. The model demonstrates good quantitative agreement with the published experimental data. Predictions of film permanence at lower temperatures, similar to those present in the archives in which the films are typically stored, are made and compared with the predictions of film conservation guidelines. The results indicate that film permanence may be overestimated by existing guidelines, which do not account for autocatalysis in their modelling of the deacetylation rate. Our results suggest that cold storage, a common film conservation strategy, may be less effective at inhibiting degradation than previously thought. As cold storage typically requires film to be kept in confined spaces with limited air movement, conditions which promote autocatalysis, the inclusion of autocatalysis in our model is highly applicable to simulating this environment

    Unveiling the importance of diffusion on the deterioration of cellulose acetate artefacts: The profile of plasticiser loss as assessed by infrared microscopy

    Get PDF
    Cellulose acetate (CA) artefacts are one of the most valued plastic items in museum collections and are known to present stability issues, with the loss of plasticiser being among the main degradation processes. This study investigates the concentration distribution of diethyl phthalate (DEP) plasticiser throughout the dimensions of CA using infrared microscopy for the first time. Artificial ageing experiments using reference and historic CA plasticised with DEP were performed to assess the change in the concentration profiles as a function of ageing time. Our analysis indicates that the plasticiser loss from CA artefacts is likely controlled by its diffusion, resulting in a concentration gradient in which lower plasticiser contents are observed at the external layers of the material

    Fossil Carder Bee's nest from the Hominin locality of Taung, South Africa

    Get PDF
    The Buxton-Norlim Limeworks southwest of Taung, South Africa, is renowned for the discovery of the first Australopithecus africanus fossil, the ‘Taung Child’. The hominin was recovered from a distinctive pink calcrete that contains an abundance of invertebrate ichnofauna belonging to the Coprinisphaera ichnofacies. Here we describe the first fossil bee’s nest, attributed to the ichnogenus Celliforma, from the Plio-Pleistocene of Africa. Petrographic examination of a cell lining revealed the preservation of an intricate organic matrix lined with the calcitic casts of numerous plant trichomes–a nesting behaviour unique to the modern-day carder bees (Anthidiini). The presence of Celliforma considered alongside several other recorded ichnofossils can be indicative of a dry, savannah environment, in agreement with recent work on the palaeoenvironment of Plio-Pleistocene southern Africa. Moreover, the occurrence of ground-nesting bees provides further evidence that the pink calcrete deposits are of pedogenic origin, rather than speleogenic origin as has previously been assumed. This study demonstrates the potential value of insect trace fossils as palaeoenvironmental indicators

    Diversity and abundance of solitary and primitively eusocial bees in an urban centre: a case study from Northampton (England)

    Get PDF
    The apparent reduction of solitary and primitively eusocial bees populations has remained a huge concern over the past few decades and urbanisation is considered as one of the factors affecting bees at different scales depending on bee guild. As urbanisation is increasing globally it necessitates more research to understand the complex community dynamics of solitary and primitively eusocial bees in urban settings. We investigated the urban core of a British town for diversity and abundance of solitary bees using standardized methods, and compared the results with nearby meadows and nature reserves. The study recorded 48 species within the town, about 22 % of the total species and 58 % of the genera of solitary bees in the United Kingdom. Furthermore we found the urban core to be more diverse and abundant in solitary and primitively eusocial bees compared to the meadows and nature re-serves. Of particular note was an urban record of the nationally rare Red Data Book species Coelioxys quadridentata and its host Anthophora quadrimaculata. This research demonstrates that urban settings can contribute significantly to the conservation of solitary and primitively eusocial bees in Britain

    Culturally valuable minority crops provide a succession of floral resources for flower visitors in traditional orchard gardens

    Get PDF
    Agricultural intensification typically has detrimental effects on pollinator communities, but diverse cropping systems that contain sequentially-flowering crops have the potential to benefit pollinators through the provision of additional floral resources. In this study we investigate the importance of cultivated flora for flower visitors in ten agricultural gardens in South Sinai, Egypt. Insect-flower interactions in gardens and unmanaged plots were surveyed across a four-month period in two environmentally distinct years (pre-flood and post-flood). Despite containing an equal abundance and diversity of wild plants as unmanaged habitat, gardens supported a higher abundance and diversity of flower visitors due to the additional presence of cultivated flora. Visitation networks exhibited dramatic intra-annual changes in composition, with cultivated plants becoming increasingly important in later months. Trends were highly conserved across 2 years despite highly contrasting rainfall. Several key crop species were strongly involved in shaping the structure of the networks, the majority of which were herbs with strong cultural significance (fennel, rosemary, mint) and grown incidentally alongside the primary orchard crops. Minority crops are frequently overlooked in agricultural systems due to their low economic value, but we show that they can have a dramatic influence upon the structure of visitation networks, increasing both pollinator abundance and diversity, and emphasising the link between cultural practices and biodiversity conservation

    Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes

    Get PDF
    © 2016 International Society for Microbial Ecology All rights reserved. Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are primary metabolic products, polyketide toxins are secondary metabolites that are involved in ecologically relevant processes, such as chemical defence, and produce the adverse effects of harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera; stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguiophytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages (apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasinophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary history of the organism, indicating selection to maintain conserved functionality. In contrast, polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes, suggesting relaxed constraints in their evolutionary history, while completely absent from some protist lineages. This demonstrates a vast potential for the production of bioactive polyketide compounds in some lineages of microbial eukaryotes, indicating that the evolution of these compounds may have played an important role in their ecological success
    corecore