3,505 research outputs found
Subanesthetic ketamine treatment promotes abnormal interactions between neural subsystems and alters the properties of functional brain networks
Acute treatment with subanesthetic ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, is widely utilized as a translational model for schizophrenia. However, how acute NMDA receptor blockade impacts on brain functioning at a systems level, to elicit translationally relevant symptomatology and behavioral deficits, has not yet been determined. Here, for the first time, we apply established and recently validated topological measures from network science to brain imaging data gained from ketamine-treated mice to elucidate how acute NMDA receptor blockade impacts on the properties of functional brain networks. We show that the effects of acute ketamine treatment on the global properties of these networks are divergent from those widely reported in schizophrenia. Where acute NMDA receptor blockade promotes hyperconnectivity in functional brain networks, pronounced dysconnectivity is found in schizophrenia. We also show that acute ketamine treatment increases the connectivity and importance of prefrontal and thalamic brain regions in brain networks, a finding also divergent to alterations seen in schizophrenia. In addition, we characterize how ketamine impacts on bipartite functional interactions between neural subsystems. A key feature includes the enhancement of prefrontal cortex (PFC)-neuromodulatory subsystem connectivity in ketamine-treated animals, a finding consistent with the known effects of ketamine on PFC neurotransmitter levels. Overall, our data suggest that, at a systems level, acute ketamine-induced alterations in brain network connectivity do not parallel those seen in chronic schizophrenia. Hence, the mechanisms through which acute ketamine treatment induces translationally relevant symptomatology may differ from those in chronic schizophrenia. Future effort should therefore be dedicated to resolve the conflicting observations between this putative translational model and schizophrenia
The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest
Vegetation in water-limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species-specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long-term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long-term experimental drought shifted water uptake toward deeper (10-35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought-affected plants. The present study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and composition
A topological classification of convex bodies
The shape of homogeneous, generic, smooth convex bodies as described by the
Euclidean distance with nondegenerate critical points, measured from the center
of mass represents a rather restricted class M_C of Morse-Smale functions on
S^2. Here we show that even M_C exhibits the complexity known for general
Morse-Smale functions on S^2 by exhausting all combinatorial possibilities:
every 2-colored quadrangulation of the sphere is isomorphic to a suitably
represented Morse-Smale complex associated with a function in M_C (and vice
versa). We prove our claim by an inductive algorithm, starting from the path
graph P_2 and generating convex bodies corresponding to quadrangulations with
increasing number of vertices by performing each combinatorially possible
vertex splitting by a convexity-preserving local manipulation of the surface.
Since convex bodies carrying Morse-Smale complexes isomorphic to P_2 exist,
this algorithm not only proves our claim but also generalizes the known
classification scheme in [36]. Our expansion algorithm is essentially the dual
procedure to the algorithm presented by Edelsbrunner et al. in [21], producing
a hierarchy of increasingly coarse Morse-Smale complexes. We point out
applications to pebble shapes.Comment: 25 pages, 10 figure
Transit Timing and Duration Variations for the Discovery and Characterization of Exoplanets
Transiting exoplanets in multi-planet systems have non-Keplerian orbits which
can cause the times and durations of transits to vary. The theory and
observations of transit timing variations (TTV) and transit duration variations
(TDV) are reviewed. Since the last review, the Kepler spacecraft has detected
several hundred perturbed planets. In a few cases, these data have been used to
discover additional planets, similar to the historical discovery of Neptune in
our own Solar System. However, the more impactful aspect of TTV and TDV studies
has been characterization of planetary systems in which multiple planets
transit. After addressing the equations of motion and parameter scalings, the
main dynamical mechanisms for TTV and TDV are described, with citations to the
observational literature for real examples. We describe parameter constraints,
particularly the origin of the mass/eccentricity degeneracy and how it is
overcome by the high-frequency component of the signal. On the observational
side, derivation of timing precision and introduction to the timing diagram are
given. Science results are reviewed, with an emphasis on mass measurements of
transiting sub-Neptunes and super-Earths, from which bulk compositions may be
inferred.Comment: Revised version. Invited review submitted to 'Handbook of
Exoplanets,' Exoplanet Discovery Methods section, Springer Reference Works,
Juan Antonio Belmonte and Hans Deeg, Eds. TeX and figures may be found at
https://github.com/ericagol/TTV_revie
Formation of Super-Earths
Super-Earths are the most abundant planets known to date and are
characterized by having sizes between that of Earth and Neptune, typical
orbital periods of less than 100 days and gaseous envelopes that are often
massive enough to significantly contribute to the planet's overall radius.
Furthermore, super-Earths regularly appear in tightly-packed multiple-planet
systems, but resonant configurations in such systems are rare. This chapters
summarizes current super-Earth formation theories. It starts from the formation
of rocky cores and subsequent accretion of gaseous envelopes. We follow the
thermal evolution of newly formed super-Earths and discuss their atmospheric
mass loss due to disk dispersal, photoevaporation, core-cooling and collisions.
We conclude with a comparison of observations and theoretical predictions,
highlighting that even super-Earths that appear as barren rocky cores today
likely formed with primordial hydrogen and helium envelopes and discuss some
paths forward for the future.Comment: Invited review accepted for publication in the 'Handbook of
Exoplanets,' Planet Formation section, Springer Reference Works, Juan Antonio
Belmonte and Hans Deeg, Ed
Belowground DNA-based techniques: untangling the network of plant root interactions
Contains fulltext :
91591.pdf (publisher's version ) (Closed access)7 p
A simple combinatorial treatment of constructions and threshold gaps of ramp schemes
We give easy proofs of some recent results concerning threshold gaps in ramp schemes. We then generalise a construction method for ramp schemes employing error-correcting codes so that it can be applied using nonlinear (as well as linear) codes. Finally, as an immediate consequence of these results, we provide a new explicit bound on the minimum length of a code having a specified distance and dual distance
Climate Change and invasibility of the Antarctic benthos
Benthic communities living in shallow-shelf habitats in Antarctica (<100-m depth) are archaic in their structure and function. Modern predators, including fast-moving, durophagous (skeleton-crushing) bony fish, sharks, and crabs, are rare or absent; slow-moving invertebrates are the top predators; and epifaunal suspension feeders dominate many soft substratum communities. Cooling temperatures beginning in the late Eocene excluded durophagous predators, ultimately resulting in the endemic living fauna and its unique food-web structure. Although the Southern Ocean is oceanographically isolated, the barriers to biological invasion are primarily physiological rather than geographic. Cold temperatures impose limits to performance that exclude modern predators. Global warming is now removing those physiological barriers, and crabs are reinvading Antarctica. As sea temperatures continue to rise, the invasion of durophagous predators will modernize the shelf benthos and erode the indigenous character of marine life in Antarctica
Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order
Results for next-to-leading order QCD corrections to the pp(p\bar{p}) -> t
\bar{t} -> W^+W^- b\bar{b} -> e^{+} \nu_{e} \mu^{-} \bar{\nu}_{\mu} b \bar{b}
+X processes with complete off-shell effects are presented for the first time.
Double-, single- and non-resonant top contributions of the order
{\cal{O}}(\alpha_{s}^3 \alpha^4) are consistently taken into account, which
requires the introduction of a complex-mass scheme for unstable top quarks.
Moreover, the intermediate W bosons are treated off-shell. Comparison to the
narrow width approximation for top quarks, where non-factorizable corrections
are not accounted for is performed. Besides the total cross section and its
scale dependence, several differential distributions at the TeVatron run II and
the LHC are given. In case of the TeVatron the forward-backward asymmetry of
the top is recalculated afresh. With inclusive selection cuts, the
forward-backward asymmetry amounts to A^{t}_{FB} = 0.051 +/- 0.0013.
Furthermore, the corrections with respect to leading order are positive and of
the order 2.3% for the TeVatron and 47% for the LHC. A study of the scale
dependence of our NLO predictions indicates that the residual theoretical
uncertainty due to higher order corrections is 8% for the TeVatron and 9% for
the LHC.Comment: 35 pages, 39 figures, 3 tables. References and note added, version to
appear in JHE
Perceived barriers and facilitators to positive therapeutic change for people with intellectual disabilities: client, carer and clinical psychologist perspectives
Studies have highlighted successful outcomes of psychological therapies for people with intellectual disabilities. However, processes underlying these outcomes are uncertain. Thematic analysis was used to explore the perceptions of three clinical psychologists, six clients and six carers of barriers and facilitators to therapeutic change for people with intellectual disabilities. Six themes were identified relating to: what the client brings as an individual and with regard to their wider system; therapy factors, including the therapeutic relationship and adaptations; psychologists acting as a
‘mental health GP’ to coordinate care; systemic dependency; and the concept of the revolving door in intellectual disability services. The influence of barriers and facilitators to change is complex, with facilitators overcoming barriers and yet simultaneously creating more barriers. Given their potential impact on the psychologists’ roles and access to therapy for people with intellectual disabilities, findings suggest these factors should be formulated as part of the therapeutic process
- …
