162 research outputs found
The Sec1/Munc18 protein Vps45 regulates cellular levels of its SNARE binding partners Tlg2 and Snc2 in Saccharomyces cerevisiae
Intracellular membrane trafficking pathways must be tightly regulated to ensure proper functioning of all eukaryotic cells. Central to membrane trafficking is the formation of specific SNARE (soluble N-ethylmeleimide-sensitive factor attachment protein receptor) complexes between proteins on opposing lipid bilayers. The Sec1/Munc18 (SM) family of proteins play an essential role in SNARE-mediated membrane fusion, and like the SNAREs are conserved through evolution from yeast to humans. The SM protein Vps45 is required for the formation of yeast endosomal SNARE complexes and is thus essential for traffic through the endosomal system. Here we report that, in addition to its role in regulating SNARE complex assembly, Vps45 regulates cellular levels of its SNARE binding partners: the syntaxin Tlg2 and the v-SNARE Snc2: Cells lacking Vps45 have reduced cellular levels of Tlg2 and Snc2; and elevation of Vps45 levels results in concomitant increases in the levels of both Tlg2 and Snc2. As well as regulating traffic through the endosomal system, the Snc v-SNAREs are also required for exocytosis. Unlike most vps mutants, cells lacking Vps45 display multiple growth phenotypes. Here we report that these can be reversed by selectively restoring Snc2 levels in vps45 mutant cells. Our data indicate that as well as functioning as part of the machinery that controls SNARE complex assembly, Vps45 also plays a key role in determining the levels of its cognate SNARE proteins; another key factor in regulation of membrane traffic
Biallelic and monoallelic ESR2 variants associated with 46,XY disorders of sex development
Purpose: Disorders or differences of sex development (DSDs) are rare congenital conditions characterized by atypical sex development. Despite advances in genomic technologies, the molecular cause remains unknown in 50% of cases.
Methods: Homozygosity mapping and whole-exome sequencing revealed an ESR2 variant in an individual with syndromic 46, XY DSD. Additional cases with 46, XY DSD underwent whole-exome sequencing and targeted next-generation sequencing of ESR2. Functional characterization of the identified variants included luciferase assays and protein structure analysis. Gonadal ESR2 expression was assessed in human embryonic data sets and immunostaining of estrogen receptor-beta (ER-beta) was performed in an 8-week-old human male embryo.
Results: We identified a homozygous ESR2 variant, c.541_543del p. (Asn181del), located in the highly conserved DNA-binding domain of ER-beta, in an individual with syndromic 46, XY DSD. Two additional heterozygous missense variants, c.251G>T p.(Gly84Val) and c.1277T>G p.(Leu426Arg), located in the N-terminus and the ligand-binding domain of ER-beta, were found in unrelated, nonsyndromic 46, XY DSD cases. Significantly increased transcriptional activation and an impact on protein conformation were shown for the p.(Asn181del) and p.(Leu426Arg) variants. Testicular ESR2 expression was previously documented and ER-beta immunostaining was positive in the developing intestine and eyes.
Conclusion: Our study supports a role for ESR2 as a novel candidate gene for 46, XY DSD
Differentiation of neurons from neural precursors generated in floating spheres from embryonic stem cells
<p>Abstract</p> <p>Background</p> <p>Neural differentiation of embryonic stem (ES) cells is usually achieved by induction of ectoderm in embryoid bodies followed by the enrichment of neuronal progenitors using a variety of factors. Obtaining reproducible percentages of neural cells is difficult and the methods are time consuming.</p> <p>Results</p> <p>Neural progenitors were produced from murine ES cells by a combination of nonadherent conditions and serum starvation. Conversion to neural progenitors was accompanied by downregulation of <it>Oct4 </it>and <it>NANOG </it>and increased expression of <it>nestin</it>. ES cells containing a GFP gene under the control of the <it>Sox1 </it>regulatory regions became fluorescent upon differentiation to neural progenitors, and ES cells with a tau-GFP fusion protein became fluorescent upon further differentiation to neurons. Neurons produced from these cells upregulated mature neuronal markers, or differentiated to glial and oligodendrocyte fates. The neurons gave rise to action potentials that could be recorded after application of fixed currents.</p> <p>Conclusion</p> <p>Neural progenitors were produced from murine ES cells by a novel method that induced neuroectoderm cells by a combination of nonadherent conditions and serum starvation, in contrast to the embryoid body method in which neuroectoderm cells must be selected after formation of all three germ layers.</p
Reduced Selective Constraint in Endosymbionts: Elevation in Radical Amino Acid Replacements Occurs Genome-Wide
As predicted by the nearly neutral model of evolution, numerous studies have shown that reduced Ne accelerates the accumulation of slightly deleterious changes under genetic drift. While such studies have mostly focused on eukaryotes, bacteria also offer excellent models to explore the effects of Ne. Most notably, the genomes of host-dependent bacteria with small Ne show signatures of genetic drift, including elevated Ka/Ks. Here, I explore the utility of an alternative measure of selective constraint: the per-site rate of radical and conservative amino acid substitutions (Dr/Dc). I test the hypothesis that purifying selection against radical amino acid changes is less effective in two insect endosymbiont groups (Blochmannia of ants and Buchnera of aphids), compared to related gamma-Proteobacteria. Genome comparisons demonstrate a significant elevation in Dr/Dc in endosymbionts that affects the majority (66–79%) of shared orthologs examined. The elevation of Dr/Dc in endosymbionts affects all functional categories examined. Simulations indicate that Dr/Dc estimates are sensitive to codon frequencies and mutational parameters; however, estimation biases occur in the opposite direction as the patterns observed in genome comparisons, thereby making the inference of elevated Dr/Dc more conservative. Increased Dr/Dc and other signatures of genome degradation in endosymbionts are consistent with strong effects of genetic drift in their small populations, as well as linkage to selected sites in these asexual bacteria. While relaxed selection against radical substitutions may contribute, genome-wide processes such as genetic drift and linkage best explain the pervasive elevation in Dr/Dc across diverse functional categories that include basic cellular processes. Although the current study focuses on a few bacterial lineages, it suggests Dr/Dc is a useful gauge of selective constraint and may provide a valuable alternative to Ka/Ks when high sequence divergences preclude estimates of Ks. Broader application of Dr/Dc will benefit from approaches less prone to estimation biases
Assessing Causality in the Relationship Between Adolescents’ Risky Sexual Online Behavior and Their Perceptions of this Behavior
The main aim of this study was to investigate the causal nature of the relationship between adolescents’ risky sexual behavior on the internet and their perceptions of this behavior. Engagement in the following online behaviors was assessed: searching online for someone to talk about sex, searching online for someone to have sex, sending intimate photos or videos to someone online, and sending one’s telephone number and address to someone exclusively known online. The relationship between these behaviors and adolescents’ perceptions of peer involvement, personal invulnerability, and risks and benefits was investigated. A two-wave longitudinal study among a representative sample of 1,445 Dutch adolescents aged 12–17 was conducted (49% females). Autoregressive cross-lagged structural equation models revealed that perceived peer involvement, perceived vulnerability, and perceived risks were all significant predictors of risky sexual online behavior 6 months later. No reverse causal paths were found. When the relationships between perceptions and risky sexual online behavior were modeled simultaneously, only perceived peer involvement was a determinant of risky sexual online behavior. Findings highlight the importance of addressing peer involvement in future interventions to reduce adolescents’ risky sexual online behavior
Adolescent Engagement in Dangerous Behaviors Is Associated with Increased White Matter Maturity of Frontal Cortex
Background: Myelination of white matter in the brain continues throughout adolescence and early adulthood. This cortical immaturity has been suggested as a potential cause of dangerous and impulsive behaviors in adolescence. Methodology/Principal Findings: We tested this hypothesis in a group of healthy adolescents, age 12–18 (N = 91), who underwent diffusion tensor imaging (DTI) to delineate cortical white matter tracts. As a measure of real-world risk taking, participants completed the Adolescent Risk Questionnaire (ARQ) which measures engagement in dangerous activities. After adjusting for age-related changes in both DTI and ARQ, engagement in dangerous behaviors was found to be positively correlated with fractional anisotropy and negatively correlated with transverse diffusivity in frontal white matter tracts, indicative of increased myelination and/or density of fibers (ages 14–18, N = 60). Conclusions/Significance: The direction of correlation suggests that rather than having immature cortices, adolescents who engage in dangerous activities have frontal white matter tracts that are more adult in form than their more conservative peers
Pain patterns and descriptions in patients with radicular pain: Does the pain necessarily follow a specific dermatome?
<p>Abstract</p> <p>Background</p> <p>It is commonly stated that nerve root pain should be expected to follow a specific dermatome and that this information is useful to make the diagnosis of radiculopathy. There is little evidence in the literature that confirms or denies this statement. The purpose of this study is to describe and discuss the diagnostic utility of the distribution of pain in patients with cervical and lumbar radicular pain.</p> <p>Methods</p> <p>Pain drawings and descriptions were assessed in consecutive patients diagnosed with cervical or lumbar nerve root pain. These findings were compared with accepted dermatome maps to determine whether they tended to follow along the involved nerve root's dermatome.</p> <p>Results</p> <p>Two hundred twenty-six nerve roots in 169 patients were assessed. Overall, pain related to cervical nerve roots was non-dermatomal in over two-thirds (69.7%) of cases. In the lumbar spine, the pain was non-dermatomal in just under two-thirds (64.1%) of cases. The majority of nerve root levels involved non-dermatomal pain patterns except C4 (60.0% dermatomal) and S1 (64.9% dermatomal). The sensitivity (SE) and specificity (SP) for dermatomal pattern of pain are low for all nerve root levels with the exception of the C4 level (Se 0.60, Sp 0.72) and S1 level (Se 0.65, Sp 0.80), although in the case of the C4 level, the number of subjects was small (n = 5).</p> <p>Conclusion</p> <p>In most cases nerve root pain should not be expected to follow along a specific dermatome, and a dermatomal distribution of pain is not a useful historical factor in the diagnosis of radicular pain. The possible exception to this is the S1 nerve root, in which the pain does commonly follow the S1 dermatome.</p
Explanation and relations. How do general practitioners deal with patients with persistent medically unexplained symptoms: a focus group study
Contains fulltext :
80758.pdf (publisher's version ) (Open Access)BACKGROUND: Persistent presentation of medically unexplained symptoms (MUS) is troublesome for general practitioners (GPs) and causes pressure on the doctor-patient relationship. As a consequence, GPs face the problem of establishing an ongoing, preferably effective relationship with these patients. This study aims at exploring GPs' perceptions about explaining MUS to patients and about how relationships with these patients evolve over time in daily practice. METHODS: A qualitative approach, interviewing a purposive sample of twenty-two Dutch GPs within five focus groups. Data were analyzed according to the principles of constant comparative analysis. RESULTS: GPs recognise the importance of an adequate explanation of the diagnosis of MUS but often feel incapable of being able to explain it clearly to their patients. GPs therefore indicate that they try to reassure patients in non-specific ways, for example by telling patients that there is no disease, by using metaphors and by normalizing the symptoms. When patients keep returning with MUS, GPs report the importance of maintaining the doctor-patient relationship. GPs describe three different models to do this; mutual alliance characterized by ritual care (e.g. regular physical examination, regular doctor visits) with approval of the patient and the doctor, ambivalent alliance characterized by ritual care without approval of the doctor and non-alliance characterized by cutting off all reasons for encounter in which symptoms are not of somatic origin. CONCLUSION: GPs feel difficulties in explaining the symptoms. GPs report that, when patients keep presenting with MUS, they focus on maintaining the doctor-patient relationship by using ritual care. In this care they meticulously balance between maintaining a good doctor-patient relationship and the prevention of unintended consequences of unnecessary interventions
Synaptically-Competent Neurons Derived from Canine Embryonic Stem Cells by Lineage Selection with EGF and Noggin
Pluripotent stem cell lines have been generated in several domestic animal species; however, these lines traditionally show poor self-renewal and differentiation. Using canine embryonic stem cell (cESC) lines previously shown to have sufficient self-renewal capacity and potency, we generated and compared canine neural stem cell (cNSC) lines derived by lineage selection with epidermal growth factor (EGF) or Noggin along the neural default differentiation pathway, or by directed differentiation with retinoic acid (RA)-induced floating sphere assay. Lineage selection produced large populations of SOX2+ neural stem/progenitor cell populations and neuronal derivatives while directed differentiation produced few and improper neuronal derivatives. Primary canine neural lines were generated from fetal tissue and used as a positive control for differentiation and electrophysiology. Differentiation of EGF- and Noggin-directed cNSC lines in N2B27 with low-dose growth factors (BDNF/NT-3 or PDGFαα) produced phenotypes equivalent to primary canine neural cells including 3CB2+ radial progenitors, MOSP+ glia restricted precursors, VIM+/GFAP+ astrocytes, and TUBB3+/MAP2+/NFH+/SYN+ neurons. Conversely, induction with RA and neuronal differentiation produced inadequate putative neurons for further study, even though appropriate neuronal gene expression profiles were observed by RT-PCR (including Nestin, TUBB3, PSD95, STX1A, SYNPR, MAP2). Co-culture of cESC-derived neurons with primary canine fetal cells on canine astrocytes was used to test functional maturity of putative neurons. Canine ESC-derived neurons received functional GABAA- and AMPA-receptor mediated synaptic input, but only when co-cultured with primary neurons. This study presents established neural stem/progenitor cell populations and functional neural derivatives in the dog, providing the proof-of-concept required to translate stem cell transplantation strategies into a clinically relevant animal model
Using the Slug Mucosal Irritation Assay to Investigate the Tolerability of Tablet Excipients on Human Skin in the Context of the Use of a Nipple Shield Delivery System
- …
