5,767 research outputs found
Collaborative multidisciplinary learning : quantity surveying students’ perspectives
The construction industry is highly fragmented and is known for its adversarial culture, culminating
in poor quality projects not completed on time or within budget. The aim of this study is thus to
guide the design of QS programme curricula in order to help students develop the requisite
knowledge and skills to work more collaboratively in their multi-disciplinary future workplaces.
A qualitative approach was considered appropriate as the authors were concerned with gathering an
initial understanding of what students think of multi-disciplinary learning. The data collection
method used was a questionnaire which was developed by the Behaviours4Collaboration (B4C)
team.
Knowledge gaps were still found across all the key areas where a future QS practitioner needs to be
collaborative (either as a project contributor or as a project leader) despite the need for change
instigated by the multi-disciplinary (BIM) education revolution.
The study concludes that universities will need to be selective in teaching, and innovative in
reorienting, QS education so that a collaborative BIM education can be effected in stages, increasing
in complexity as the students’ technical knowledge grows. This will help students to build the
competencies needed to make them future leaders. It will also support programme currency and
delivery
Quantum resource estimates for computing elliptic curve discrete logarithms
We give precise quantum resource estimates for Shor's algorithm to compute
discrete logarithms on elliptic curves over prime fields. The estimates are
derived from a simulation of a Toffoli gate network for controlled elliptic
curve point addition, implemented within the framework of the quantum computing
software tool suite LIQ. We determine circuit implementations for
reversible modular arithmetic, including modular addition, multiplication and
inversion, as well as reversible elliptic curve point addition. We conclude
that elliptic curve discrete logarithms on an elliptic curve defined over an
-bit prime field can be computed on a quantum computer with at most qubits using a quantum circuit of at most Toffoli gates. We are able to classically simulate the
Toffoli networks corresponding to the controlled elliptic curve point addition
as the core piece of Shor's algorithm for the NIST standard curves P-192,
P-224, P-256, P-384 and P-521. Our approach allows gate-level comparisons to
recent resource estimates for Shor's factoring algorithm. The results also
support estimates given earlier by Proos and Zalka and indicate that, for
current parameters at comparable classical security levels, the number of
qubits required to tackle elliptic curves is less than for attacking RSA,
suggesting that indeed ECC is an easier target than RSA.Comment: 24 pages, 2 tables, 11 figures. v2: typos fixed and reference added.
ASIACRYPT 201
Gate-Controlled Ionization and Screening of Cobalt Adatoms on a Graphene Surface
We describe scanning tunneling spectroscopy (STS) measurements performed on
individual cobalt (Co) atoms deposited onto backgated graphene devices. We find
that Co adatoms on graphene can be ionized by either the application of a
global backgate voltage or by the application of a local electric field from a
scanning tunneling microscope (STM) tip. Large screening clouds are observed to
form around Co adatoms ionized in this way, and we observe that some intrinsic
graphene defects display a similar behavior. Our results provide new insight
into charged impurity scattering in graphene, as well as the possibility of
using graphene devices as chemical sensors.Comment: 19 pages, 4 figure
Recommended from our members
Spatial housing economics: a survey
This introduction to the Virtual Special Issue surveys the development of spatial housing economics from its roots in neo-classical theory, through more recent developments in social interactions modelling, and touching on the role of institutions, path dependence and economic history. The survey also points to some of the more promising future directions for the subject that are beginning to appear in the literature. The survey covers elements hedonic models, spatial econometrics, neighbourhood models, housing market areas, housing supply, models of segregation, migration, housing tenure, sub-national house price modelling including the so-called ripple effect, and agent-based models. Possible future directions are set in the context of a selection of recent papers that have appeared in Urban Studies. Nevertheless, there are still important gaps in the literature that merit further attention, arising at least partly from emerging policy problems. These include more research on housing and biodiversity, the relationship between housing and civil unrest, the effects of changing age distributions - notably housing for the elderly - and the impact of different international institutional structures. Methodologically, developments in Big Data provide an exciting framework for future work
Improved annotation of 3' untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-seq and ESTs
The reference annotations made for a genome sequence provide the framework
for all subsequent analyses of the genome. Correct annotation is particularly
important when interpreting the results of RNA-seq experiments where short
sequence reads are mapped against the genome and assigned to genes according to
the annotation. Inconsistencies in annotations between the reference and the
experimental system can lead to incorrect interpretation of the effect on RNA
expression of an experimental treatment or mutation in the system under study.
Until recently, the genome-wide annotation of 3-prime untranslated regions
received less attention than coding regions and the delineation of intron/exon
boundaries. In this paper, data produced for samples in Human, Chicken and A.
thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing
technology from Helicos Biosciences which locates 3-prime polyadenylation sites
to within +/- 2 nt, were combined with archival EST and RNA-Seq data. Nine
examples are illustrated where this combination of data allowed: (1) gene and
3-prime UTR re-annotation (including extension of one 3-prime UTR by 5.9 kb);
(2) disentangling of gene expression in complex regions; (3) clearer
interpretation of small RNA expression and (4) identification of novel genes.
While the specific examples displayed here may become obsolete as genome
sequences and their annotations are refined, the principles laid out in this
paper will be of general use both to those annotating genomes and those seeking
to interpret existing publically available annotations in the context of their
own experimental dataComment: 44 pages, 9 figure
Applying Recent Argumentation Methods to Some Ancient Examples of Plausible Reasoning
Plausible (eikotic) reasoning known from ancient Greek (late Academic) skeptical philosophy is shown to be a clear notion that can be analyzed by argu- mentation methods, and that is important for argumentation studies. It is shown how there is a continuous thread running from the Sophists to the skeptical philosopher Carneades, through remarks of Locke and Bentham on the subject, to recent research in artificial intelligence. Eleven characteristics of plausible reasoning are specified by analyzing key examples of it recognized as important in ancient Greek skeptical philosophy using an artificial intelligence model called the Carneades Argumentation System (CAS). By applying CAS to ancient examples it is shown how plausible reasoning is especially useful for gaining a better understanding of evidential reasoning in law, and argued that it can also be applied to everyday argumentation. Our analysis of the snake and rope example of Carneades is also used to point out some ways CAS needs to be extended if it is to more fully model the views of this ancient philosopher on argumentation
An exploration of parents’ preferences for foot care in juvenile idiopathic arthritis: a possible role for the discrete choice experiment
Background:
An increased awareness of patients’ and parents’ care preferences regarding foot care is desirable from a clinical perspective as such information may be utilised to optimise care delivery. The aim of this study was to examine parents’ preferences for, and valuations of foot care and foot-related outcomes in juvenile idiopathic arthritis (JIA).<p></p>
Methods:
A discrete choice experiment (DCE) incorporating willingness-to-pay (WTP) questions was conducted by surveying 42 parents of children with JIA who were enrolled in a randomised-controlled trial of multidisciplinary foot care at a single UK paediatric rheumatology outpatients department. Attributes explored were: levels of pain; mobility; ability to perform activities of daily living (ADL); waiting time; referral route; and footwear. The DCE was administered at trial baseline. DCE data were analysed using a multinomial-logit-regression model to estimate preferences and relative importance of attributes of foot care. A stated-preference WTP question was presented to estimate parents’ monetary valuation of health and service improvements.<p></p>
Results:
Every attribute in the DCE was statistically significant (p < 0.01) except that of cost (p = 0.118), suggesting that all attributes, except cost, have an impact on parents’ preferences for foot care for their child. The magnitudes of the coefficients indicate that the strength of preference for each attribute was (in descending order): improved ability to perform ADL, reductions in foot pain, improved mobility, improved ability to wear desired footwear, multidisciplinary foot care route, and reduced waiting time. Parents’ estimated mean annual WTP for a multidisciplinary foot care service was £1,119.05.<p></p>
Conclusions:
In terms of foot care service provision for children with JIA, parents appear to prefer improvements in health outcomes over non-health outcomes and service process attributes. Cost was relatively less important than other attributes suggesting that it does not appear to impact on parents’ preferences.<p></p>
Tangible Data Souvenirs as a Bridge between a Physical Museum Visit and Online Digital Experience
This paper presents the design, implementation, use and evaluation of a tangible data souvenir for an interactive museum exhibition. We define a data souvenir as the materialisation of the personal visiting experience: a data souvenir is dynamically created on the basis of data recorded throughout the visit and therefore captures and represents the experience as lived. The souvenir provides visitors with a memento of their visit and acts as a gateway to further online content. A step further is to enable visitors to contribute, in other words the data souvenir can become a means to collect visitor-generated content. We discuss the rationale behind the use of a data souvenir, the design process and resulting artefacts, and the implementation of both the data souvenir and online content system. Finally we examine the installation of the data souvenirs as part of a long-lasting exhibition: the use of this souvenir by visitors has been logged over seven months and issues around the gathering of user-generated content in such a way are discussed.
Keywords: Tangible interaction; data souvenir; museums; user-generated content
Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us
Supernova remnants (SNRs) arise from the interaction between the ejecta of a
supernova (SN) explosion and the surrounding circumstellar and interstellar
medium. Some SNRs, mostly nearby SNRs, can be studied in great detail. However,
to understand SNRs as a whole, large samples of SNRs must be assembled and
studied. Here, we describe the radio, optical, and X-ray techniques which have
been used to identify and characterize almost 300 Galactic SNRs and more than
1200 extragalactic SNRs. We then discuss which types of SNRs are being found
and which are not. We examine the degree to which the luminosity functions,
surface-brightness distributions and multi-wavelength comparisons of the
samples can be interpreted to determine the class properties of SNRs and
describe efforts to establish the type of SN explosion associated with a SNR.
We conclude that in order to better understand the class properties of SNRs, it
is more important to study (and obtain additional data on) the SNRs in galaxies
with extant samples at multiple wavelength bands than it is to obtain samples
of SNRs in other galaxiesComment: Final 2016 draft of a chapter in "Handbook of Supernovae" edited by
Athem W. Alsabti and Paul Murdin. Final version available at
https://doi.org/10.1007/978-3-319-20794-0_90-
Microbial ligand costimulation drives neutrophilic steroid-refractory asthma
Funding: The authors thank the Wellcome Trust (102705) and the Universities of Aberdeen and Cape Town for funding. This research was also supported, in part, by National Institutes of Health GM53522 and GM083016 to DLW. KF and BNL are funded by the Fonds Wetenschappelijk Onderzoek, BNL is the recipient of an European Research Commission consolidator grant and participates in the European Union FP7 programs EUBIOPRED and MedALL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
- …
