246 research outputs found

    The burden of neglected tropical diseases in Ethiopia, and opportunities for integrated control and elimination

    Get PDF
    Background: Neglected tropical diseases (NTDs) are a group of chronic parasitic diseases and related conditions that are the most common diseases among the 2·7 billion people globally living on less than US$2 per day. In response to the growing challenge of NTDs, Ethiopia is preparing to launch a NTD Master Plan. The purpose of this review is to underscore the burden of NTDs in Ethiopia, highlight the state of current interventions, and suggest ways forward. Results: This review indicates that NTDs are significant public health problems in Ethiopia. From the analysis reported here, Ethiopia stands out for having the largest number of NTD cases following Nigeria and the Democratic Republic of Congo. Ethiopia is estimated to have the highest burden of trachoma, podoconiosis and cutaneous leishmaniasis in sub-Saharan Africa (SSA), the second highest burden in terms of ascariasis, leprosy and visceral leishmaniasis, and the third highest burden of hookworm. Infections such as schistosomiasis, trichuriasis, lymphatic filariasis and rabies are also common. A third of Ethiopians are infected with ascariasis, one quarter is infected with trichuriasis and one in eight Ethiopians lives with hookworm or is infected with trachoma. However, despite these high burdens of infection, the control of most NTDs in Ethiopia is in its infancy. In terms of NTD control achievements, Ethiopia reached the leprosy elimination target of 1 case/10,000 population in 1999. No cases of human African trypanosomiasis have been reported since 1984. Guinea worm eradication is in its final phase. The Onchocerciasis Control Program has been making steady progress since 2001. A national blindness survey was conducted in 2006 and the trachoma program has kicked off in some regions. Lymphatic Filariasis, podoconiosis and rabies mapping are underway. Conclusion: Ethiopia bears a significant burden of NTDs compared to other SSA countries. To achieve success in integrated control of NTDs, integrated mapping, rapid scale up of interventions and operational research into co implementation of intervention packages will be crucial

    Chronic treatment with 17-DMAG improves balance and coordination in a new mouse model of Machado-Joseph disease

    Get PDF
    Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disease currently with no treatment. We describe a novel mouse model of MJD which expresses mutant human ataxin-3 at near endogenous levels and manifests MJD-like motor symptoms that appear gradually and progress over time. CMVMJD135 mice show ataxin-3 intranuclear inclusions in the CNS and neurodegenerative changes in key disease regions, such as the pontine and dentate nuclei. Hsp90 inhibition has shown promising outcomes in some neurodegenerative diseases, but nothing is known about its effects in MJD. Chronic treatment of CMVMJD mice with Hsp90 inhibitor 17-DMAG resulted in a delay in the progression of their motor coordination deficits and, at 22 and 24 weeks of age, was able to rescue the uncoordination phenotype to wild-type levels; in parallel, a reduction in neuropathology was observed in treated animals. We observed limited induction of heat-shock proteins with treatment, but found evidence that 17-DMAG may be acting through autophagy, as LC3-II (both at mRNA and protein levels) and beclin-1 were induced in the brain of treated animals. This resulted in decreased levels of the mutant ataxin-3 and reduced intranuclear aggregation of this protein. Our data validate this novel mouse model as a relevant tool for the study of MJD pathogenesis and for pre-clinical studies, and show that Hsp90 inhibition is a promising therapeutic strategy for MJD.We would like to thank to Dr. Henry Paulson for providing the anti-ataxin-3 serum, Dr. Monica Sousa for the pCMV vector and to Eng. Lucilia Goreti Pinto, Lu s Martins, Miguel Carneiro and Celina Barros for technical assistance. This work was supported by Fundacao para a Ciencia e Tecnologia through the projects FEDER/FCT, POCI/SAU-MMO/60412/2004 and PTDC/SAU-GMG/64076/2006. This work was supported by Fundacao para a Ciencia e Tecnologia through fellowships SFRH/BPD/91562/2012 to A.S-F., SFRH/BD/78388/2011 to S. D-S., SFRH/BD/51059/2010 to A.N-C., and SFRH/BPD/79469/2011 to A.T-C.

    Activation of mGlu3 Receptors Stimulates the Production of GDNF in Striatal Neurons

    Get PDF
    Metabotropic glutamate (mGlu) receptors have been considered potential targets for the therapy of experimental parkinsonism. One hypothetical advantage associated with the use of mGlu receptor ligands is the lack of the adverse effects typically induced by ionotropic glutamate receptor antagonists, such as sedation, ataxia, and severe learning impairment. Low doses of the mGlu2/3 metabotropic glutamate receptor agonist, LY379268 (0.25–3 mg/kg, i.p.) increased glial cell line-derived neurotrophic factor (GDNF) mRNA and protein levels in the mouse brain, as assessed by in situ hybridization, real-time PCR, immunoblotting, and immunohistochemistry. This increase was prominent in the striatum, but was also observed in the cerebral cortex. GDNF mRNA levels peaked at 3 h and declined afterwards, whereas GDNF protein levels progressively increased from 24 to 72 h following LY379268 injection. The action of LY379268 was abrogated by the mGlu2/3 receptor antagonist, LY341495 (1 mg/kg, i.p.), and was lost in mGlu3 receptor knockout mice, but not in mGlu2 receptor knockout mice. In pure cultures of striatal neurons, the increase in GDNF induced by LY379268 required the activation of the mitogen-activated protein kinase and phosphatidylinositol-3-kinase pathways, as shown by the use of specific inhibitors of the two pathways. Both in vivo and in vitro studies led to the conclusion that neurons were the only source of GDNF in response to mGlu3 receptor activation. Remarkably, acute or repeated injections of LY379268 at doses that enhanced striatal GDNF levels (0.25 or 3 mg/kg, i.p.) were highly protective against nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice, as assessed by stereological counting of tyrosine hydroxylase-positive neurons in the pars compacta of the substantia nigra. We speculate that selective mGlu3 receptor agonists or enhancers are potential candidates as neuroprotective agents in Parkinson's disease, and their use might circumvent the limitations associated with the administration of exogenous GDNF

    Association of plasma vitamin D metabolites with incident type 2 diabetes: EPIC-InterAct case-cohort study

    Get PDF
    Background Existing evidence for the prospective association of vitamin D status with type 2 diabetes (T2D) is focused almost exclusively on circulating total 25-hydroxyvitamin D [25(OH)D] without distinction between its subtypes: nonepimeric and epimeric 25(OH)D3 stereoisomers, and 25(OH)D2, the minor component of 25(OH)D. We aimed to investigate the prospective associations of circulating levels of the sum and each of these three metabolites with incident T2D. Methods This analysis in the European Prospective Investigation into Cancer and Nutrition (EPIC)–InterAct case-cohort study for T2D included 9671 incident T2D cases and 13,562 subcohort members. Plasma vitamin D metabolites were quantified by liquid chromatography–mass spectrometry. We used a multivariable Prentice-weighted Cox regression to estimate hazard ratios (HRs) of T2D for each metabolite. Analyses were performed separately within country, and estimates were combined across countries using random-effects meta-analysis. Results The mean concentrations (SD) of total 25(OH)D, nonepimeric 25(OH)D3, epimeric 25(OH)D3, and 25(OH)D2 were 41.1 (17.2), 40.7 (17.3), 2.13 (1.31), and 8.16 (6.52) nmol/L, respectively. Plasma total 25(OH)D and nonepimeric 25(OH)D3 were inversely associated with incident T2D [multivariable-adjusted HR per 1 SD = 0.81 (95% CI, 0.77, 0.86) for both variables], whereas epimeric 25(OH)D3 was positively associated [per 1 SD HR = 1.16 (1.09, 1.25)]. There was no statistically significant association with T2D for 25(OH)D2 [per 1 SD HR = 0.94 (0.76, 1.18)]. Conclusions Plasma nonepimeric 25(OH)D3 was inversely associated with incident T2D, consistent with it being the major metabolite contributing to total 25(OH)D. The positive association of the epimeric form of 25(OH)D3 with incident T2D provides novel information to assess the biological relevance of vitamin D epimerization and vitamin D subtypes in diabetes etiology

    Enhanced Platelet Activation Mediates the Accelerated Angiogenic Switch in Mice Lacking Histidine-Rich Glycoprotein

    Get PDF
    BACKGROUND: The heparin-binding plasma protein histidine-rich glycoprotein (HRG; alternatively, HRGP/HPRG) can suppress tumor angiogenesis and growth in vitro and in vivo. Mice lacking the HRG gene are viable and fertile, but have an enhanced coagulation resulting in decreased bleeding times. In addition, the angiogenic switch is significantly enhanced in HRG-deficient mice. METHODOLOGY/PRINCIPAL FINDINGS: To address whether HRG deficiency affects tumor development, we have crossed HRG knockout mice with the RIP1-Tag2 mouse, a well established orthotopic model of multistage carcinogenesis. RIP1-Tag2 HRG(-/-) mice display significantly larger tumor volume compared to their RIP1-Tag2 HRG(+/+) littermates, supporting a role for HRG as an endogenous regulator of tumor growth. In the present study we also demonstrate that platelet activation is increased in mice lacking HRG. To address whether this elevated platelet activation contributes to the increased pathological angiogenesis in HRG-deficient mice, they were rendered thrombocytopenic before the onset of the angiogenic switch by injection of the anti-platelet antibody GP1bα. Interestingly, this treatment suppressed the increase in angiogenic neoplasias seen in HRG knockout mice. However, if GP1bα treatment was initiated at a later stage, after the onset of the angiogenic switch, no suppression of tumor growth was detected in HRG-deficient mice. CONCLUSIONS: Our data show that increased platelet activation mediates the accelerated angiogenic switch in HRG-deficient mice. Moreover, we conclude that platelets play a crucial role in the early stages of tumor development but are of less significance for tumor growth once angiogenesis has been initiated

    Retinol Metabolism in the Mollusk Osilinus lineatus Indicates an Ancient Origin for Retinyl Ester Storage Capacity

    Get PDF
    Although retinoids have been reported to be present and active in vertebrates and invertebrates, the presence of mechanisms for retinoid storage in the form of retinyl esters, a key feature to maintain whole-organism retinoid homeostasis, have been considered to date a vertebrate innovation. Here we demonstrate for the first time the presence of retinol and retinyl esters in an invertebrate lophotrochozoan species, the gastropod mollusk Osilinus lineatus. Furthermore, through a pharmacological approach consisting of intramuscular injections of different retinoid precursors, we also demonstrate that the retinol esterification pathway is active in vivo in this species. Interestingly, retinol and retinyl esters were only detected in males, suggesting a gender-specific role for these compounds in the testis. Females, although lacking detectable levels of retinol or retinyl esters, also have the biochemical capacity to esterify retinol, but at a lower rate than males. The occurrence of retinyl ester storage capacity, together with the presence in males and females of active retinoids, i.e., retinoic acid isomers, indicates that O. lineatus has a well developed retinoid system. Hence, the present data strongly suggest that the capacity to maintain retinoid homeostasis has arisen earlier in Bilateria evolution than previously thought

    Low Densities of Serotonin and Peptide YY Cells in the Colon of Patients with Irritable Bowel Syndrome

    Get PDF
    Background The gut hormones are important in regulating gastrointestinal motility. Disturbances in gastrointestinal motility have been reported in patients with irritable bowel syndrome (IBS). Reduced endocrine cell density, as revealed by chromogranin A, has been reported in the colon of IBS patients. Aims To investigate a possible abnormality in the colonic endocrine cells of IBS patients. Methods A total of 41 patients with IBS according to Rome Criteria III and 20 controls were included in the study. Biopsies from the right and left colon were obtained from both patients and controls during colonoscopy. The biopsies were immunostained for serotonin, peptide YY (PYY), pancreatic polypeptide (PP), entroglucagon, and somatostatin cells. Cell densities were quantified by computerized image analysis. Results Serotonin and PYY cell densities were reduced in the colon of IBS patients. PP, entroglucagon, and somatostatin- immunoreactive cells were too few to enable reliable quantification

    Reduced Proliferation in the Adult Mouse Subventricular Zone Increases Survival of Olfactory Bulb Interneurons

    Get PDF
    Neurogenesis in the adult brain is largely restricted to the subependymal zone (SVZ) of the lateral ventricle, olfactory bulb (OB) and the dentate subgranular zone, and survival of adult-born cells in the OB is influenced by factors including sensory experience. We examined, in mice, whether survival of adult-born cells is also regulated by the rate of precursor proliferation in the SVZ. Precursor proliferation was decreased by depleting the SVZ of dopamine after lesioning dopamine neurons in the substantia nigra compacta with 6-hydroxydopamine. Subsequently, we examined the effect of reduced SVZ proliferation on the generation, migration and survival of neuroblasts and mature adult-born cells in the SVZ, rostral migratory stream (RMS) and OB. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU) injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 47% or 36%, respectively, 7 days after dopamine depletion, and by 29% or 31% 42 days after dopamine depletion, compared to sham-treated animals. Neuroblast generation in the SVZ and their migration along the RMS were not affected, neither 7 nor 42 days after the 6-hydroxydopamine injection, since the number of doublecortin-immunoreactive neuroblasts in the SVZ and RMS, as well as the number of neuronal nuclei-immunoreactive cells in the OB, were stable compared to control. However, survival analysis 15 days after 6-hydroxydopamine and 6 days after BrdU injections showed that the number of BrdU+ cells in the SVZ was 70% higher. Also, 42 days after 6-hydroxydopamine and 30 days after BrdU injections, we found an 82% increase in co-labeled BrdU+/γ-aminobutyric acid-immunoreactive cell bodies in the granular cell layer, while double-labeled BrdU+/tyrosine hydroxylase-immunoreactive cell bodies in the glomerular layer increased by 148%. We conclude that the number of OB interneurons following reduced SVZ proliferation is maintained through an increased survival of adult-born precursor cells, neuroblasts and interneurons

    The significance of nitrogen cost minimization in proteomes of marine microorganisms

    Get PDF
    Marine microorganisms thrive under low levels of nitrogen (N). N cost minimization is a major selective pressure imprinted on open-ocean microorganism genomes. Here we show that amino-acid sequences from the open ocean are reduced in N, but increased in average mass compared with coastal-ocean microorganisms. Nutrient limitation exerts significant pressure on organisms supporting the trade-off between N cost minimization and increased average mass of amino acids that is a function of increased A+T codon usage. N cost minimization, especially of highly expressed proteins, reduces the total cellular N budget by 2.7–10% this minimization in combination with reduction in genome size and cell size is an evolutionary adaptation to nutrient limitation. The biogeochemical and evolutionary precedent for these findings suggests that N limitation is a stronger selective force in the ocean than biosynthetic costs and is an important evolutionary strategy in resource-limited ecosystems
    corecore