198 research outputs found
Environmental Costs of Government-Sponsored Agrarian Settlements in Brazilian Amazonia
Brazil has presided over the most comprehensive agrarian reform frontier colonization program on Earth, in which ~1.2 million settlers have been translocated by successive governments since the 1970's, mostly into forested hinterlands of Brazilian Amazonia. These settlements encompass 5.3% of this ~5 million km2 region, but have contributed with 13.5% of all land conversion into agropastoral land uses. The Brazilian Federal Agrarian Agency (INCRA) has repeatedly claimed that deforestation in these areas largely predates the sanctioned arrival of new settlers. Here, we quantify rates of natural vegetation conversion across 1911 agrarian settlements allocated to 568 Amazonian counties and compare fire incidence and deforestation rates before and after the official occupation of settlements by migrant farmers. The timing and spatial distribution of deforestation and fires in our analysis provides irrefutable chronological and spatially explicit evidence of agropastoral conversion both inside and immediately outside agrarian settlements over the last decade. Deforestation rates are strongly related to local human population density and road access to regional markets. Agrarian settlements consistently accelerated rates of deforestation and fires, compared to neighboring areas outside settlements, but within the same counties. Relocated smallholders allocated to forest areas undoubtedly operate as pivotal agents of deforestation, and most of the forest clearance occurs in the aftermath of government-induced migration
A secretome profile indicative of oleate-induced proliferation of HepG2 hepatocellular carcinoma cells
Increased fatty acid (FA) is often observed in highly proliferative tumors. FAs have been shown to modulate the secretion of proteins from tumor cells, contributing to tumor survival. However, the secreted factors affected by FA have not been systematically explored. Here, we found that treatment of oleate, a monounsaturated omega-9 FA, promoted the proliferation of HepG2 cells. To examine the secreted factors associated with oleate-induced cell proliferation, we performed a comprehensive secretome profiling of oleate-treated and untreated HepG2 cells. A comparison of the secretomes identified 349 differentially secreted proteins (DSPs; 145 upregulated and 192 downregulated) in oleate-treated samples, compared to untreated samples. The functional enrichment and network analyses of the DSPs revealed that the 145 upregulated secreted proteins by oleate treatment were mainly associated with cell proliferation-related processes, such as lipid metabolism, inflammatory response, and ER stress. Based on the network models of the DSPs, we selected six DSPs (MIF, THBS1, PDIA3, APOA1, FASN, and EEF2) that can represent such processes related to cell proliferation. Thus, our results provided a secretome profile indicative of an oleate-induced proliferation of HepG2 cell
A Machine Learning Trainable Model to Assess the Accuracy of Probabilistic Record Linkage
Record linkage (RL) is the process of identifying and linking data that relates to the same physical entity across multiple heterogeneous data sources. Deterministic linkage methods rely on the presence of common uniquely identifying attributes across all sources while probabilistic approaches use non-unique attributes and calculates similarity indexes for pair wise comparisons. A key component of record linkage is accuracy assessment — the process of manually verifying and validating matched pairs to further refine linkage parameters and increase its overall effectiveness. This process however is time-consuming and impractical when applied to large administrative data sources where millions of records must be linked. Additionally, it is potentially biased as the gold standard used is often the reviewer’s intuition. In this paper, we present an approach for assessing and refining the accuracy of probabilistic linkage based on different supervised machine learning methods (decision trees, naïve Bayes, logistic regression, random forest, linear support vector machines and gradient boosted trees). We used data sets extracted from huge Brazilian socioeconomic and public health care data sources. These models were evaluated using receiver operating characteristic plots, sensitivity, specificity and positive predictive values collected from a 10-fold cross-validation method. Results show that logistic regression outperforms other classifiers and enables the creation of a generalized, very accurate model to validate linkage results
Linking Self-Incompatibility, Dichogamy, and Flowering Synchrony in Two Euphorbia Species: Alternative Mechanisms for Avoiding Self-Fertilization?
Background: Plant species have several mechanisms to avoid selfing such as dichogamy or a self-incompatibility response.
Dichogamy in a single flower may reduce autogamy but, to avoid geitonogamy, plants must show flowering
synchronization among all their flowers (i.e. synchronous dichogamy). It is hypothesized that one species would not
simultaneously show synchronous dichogamy and self-incompatibility because they are redundant mechanisms to reduce
selfing; however, this has not been accurately assessed.
Methodology/Principal Findings: This expectation was tested over two years in two natural populations of the closely
related Mediterranean spurges Euphorbia boetica and E. nicaeensis, which completely avoid autogamy by protogyny at the
cyathia level. Both spurges showed a high population synchrony (Z,79), and their inflorescences flower synchronously. In E.
nicaeensis, there was no overlap among the cyathia in anthesis of successive inflorescence levels and the overlap between
sexual phases of cyathia of the same inflorescence level was uncommon (4–16%). In contrast, E. boetica showed a high
overlap among consecutive inflorescence levels (74–93%) and between sexual phases of cyathia of the same inflorescence
level (48–80%). The flowering pattern of both spurges was consistent in the two populations and over the two successive
years. A hand-pollination experiment demonstrated that E. nicaeensis was strictly self-compatible whereas E. boetica was
partially self-incompatible.
Conclusions/Significance: We propose that the complex pattern of synchronized protogyny in E. nicaeensis prevents
geitonogamous crosses and, consequently, avoids selfing and inbreeding depression. In E. boetica, a high probability of
geitonogamous crosses may occur but, alternatively, this plant escapes selfing through a self-incompatibility response. We
posit that synchronous dichogamy and physiological self-incompatibility do not co-occur in the same species because each
process is sufficiently effective in avoiding self-fertilization.España Ministerio de Ciencia y Tecnología PLO CGL2005-03731; CGL2008-02533-EEspaña Ministerio de Ciencia y Tecnología MA CGL2009-0825
The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study
AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease
Hyperbaric oxygen and hyperbaric air treatment result in comparable neuronal death reduction and improved behavioral outcome after transient forebrain ischemia in the gerbil
Resource availability and diet in Harpy Eagle breeding territories on the Xingu River, Brazilian Amazon
- …
