2,518 research outputs found
A System for Accessible Artificial Intelligence
While artificial intelligence (AI) has become widespread, many commercial AI
systems are not yet accessible to individual researchers nor the general public
due to the deep knowledge of the systems required to use them. We believe that
AI has matured to the point where it should be an accessible technology for
everyone. We present an ongoing project whose ultimate goal is to deliver an
open source, user-friendly AI system that is specialized for machine learning
analysis of complex data in the biomedical and health care domains. We discuss
how genetic programming can aid in this endeavor, and highlight specific
examples where genetic programming has automated machine learning analyses in
previous projects.Comment: 14 pages, 5 figures, submitted to Genetic Programming Theory and
Practice 2017 worksho
Plasticity facilitates sustainable growth in the commons
In the commons, communities whose growth depends on public goods, individuals
often rely on surprisingly simple strategies, or heuristics, to decide whether
to contribute to the common good (at risk of exploitation by free-riders).
Although this appears a limitation, here we show how four heuristics lead to
sustainable growth by exploiting specific environmental constraints. The two
simplest ones --contribute permanently or switch stochastically between
contributing or not-- are first shown to bring sustainability when the public
good efficiently promotes growth. If efficiency declines and the commons is
structured in small groups, the most effective strategy resides in contributing
only when a majority of individuals are also contributors. In contrast, when
group size becomes large, the most effective behavior follows a minimal-effort
rule: contribute only when it is strictly necessary. Both plastic strategies
are observed in natural systems what presents them as fundamental social motifs
to successfully manage sustainability
Seasonal differences in the photochemistry of the South Pacific: A comparison of observations and model results from PEM-Tropics A and B
A time-dependent photochemical box model is used to examine the photochemistry of the equatorial and southern subtropical Pacific troposphere with aircraft data obtained during two distinct seasons: the Pacific Exploratory Mission-Tropics A (PEM-Tropics A) field campaign in September and October of 1996 and the Pacific Exploratory Mission-Tropics B (PEM-Tropics B) campaign in March and April of 1999. Model-predicted values were compared to observations for selected species (e.g., NO2, OH, HO2) with generally good agreement. Predicted values of HO2 were larger than those observed in the upper troposphere, in contrast to previous studies which show a general underprediction of HO2 at upper altitudes. Some characteristics of the budgets of HOx, NOx, and peroxides are discussed. The integrated net tendency for O3 is negative over the remote Pacific during both seasons, with gross formation equal to no more than half of the gross destruction. This suggests that a continual supply of O3 into the Pacific region throughout the year must exist in order to maintain O3 levels. Integrated net tendencies for equatorial O3 showed a seasonality, with a net loss of 1.06×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 50% to 1.60×1011 molecules cm-2 s-1 during PEM-Tropics A (September). The seasonality over the southern subtropical Pacific was somewhat lower, with losses of 1.21×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 25% to 1.51×1011 molecules cm-2 s-1 during PEM-Tropics A (September). While the larger net losses during PEM-Tropics A were primarily driven by higher concentrations of O3, the ability of the subtropical atmosphere to destroy O3 was ∼30% less effective during the PEM-Tropics A (September) campaign due to a drier atmosphere and higher overhead O3 column amounts. Copyright 2001 by the American Geophysical Union
Convective transport of formaldehyde to the upper troposphere and lower stratosphere and associated scavenging in thunderstorms over the central United States during the 2012DC3 study
Sacred Canopies or Religious Markets? The Effect of County-Level Religious Diversity on Later Changes in Religious Involvement
Secularization theories, such as Berger's Sacred Canopy argument , hold that religious diversity leads to a decline in religious participation. Religious market models (e.g., Finke and Stark) argue the opposite. Voas, Olson, and Crockett found that nearly all of the vast research exploring this important question prior to 2002 was flawed due to a previously unrecognized noncausal statistical relationship between measures of religious diversity and measures of religious participation. Since 2002, this methodological issue has largely stymied research on this important topic. We first describe how, following Voas et al.’s recommendations, longitudinal models can overcome these problems. We then apply these methods to data measuring the religious composition of all U.S. counties found in the Religious Congregations and Membership Studies from 1980, 1990, 2000, and 2010. Using multilevel longitudinal regression models, we find that greater county‐level religious diversity is followed by later declines in county‐level religious participation rates. The negative effect size of religious diversity is large and robust to changes in the control variables and different methods of measuring religious diversity
Calibration of myocardial T2 and T1 against iron concentration.
BACKGROUND: The assessment of myocardial iron using T2* cardiovascular magnetic resonance (CMR) has been validated and calibrated, and is in clinical use. However, there is very limited data assessing the relaxation parameters T1 and T2 for measurement of human myocardial iron.
METHODS: Twelve hearts were examined from transfusion-dependent patients: 11 with end-stage heart failure, either following death (n=7) or cardiac transplantation (n=4), and 1 heart from a patient who died from a stroke with no cardiac iron loading. Ex-vivo R1 and R2 measurements (R1=1/T1 and R2=1/T2) at 1.5 Tesla were compared with myocardial iron concentration measured using inductively coupled plasma atomic emission spectroscopy.
RESULTS: From a single myocardial slice in formalin which was repeatedly examined, a modest decrease in T2 was observed with time, from mean (± SD) 23.7 ± 0.93 ms at baseline (13 days after death and formalin fixation) to 18.5 ± 1.41 ms at day 566 (p<0.001). Raw T2 values were therefore adjusted to correct for this fall over time. Myocardial R2 was correlated with iron concentration [Fe] (R2 0.566, p<0.001), but the correlation was stronger between LnR2 and Ln[Fe] (R2 0.790, p<0.001). The relation was [Fe] = 5081•(T2)-2.22 between T2 (ms) and myocardial iron (mg/g dry weight). Analysis of T1 proved challenging with a dichotomous distribution of T1, with very short T1 (mean 72.3 ± 25.8 ms) that was independent of iron concentration in all hearts stored in formalin for greater than 12 months. In the remaining hearts stored for <10 weeks prior to scanning, LnR1 and iron concentration were correlated but with marked scatter (R2 0.517, p<0.001). A linear relationship was present between T1 and T2 in the hearts stored for a short period (R2 0.657, p<0.001).
CONCLUSION: Myocardial T2 correlates well with myocardial iron concentration, which raises the possibility that T2 may provide additive information to T2* for patients with myocardial siderosis. However, ex-vivo T1 measurements are less reliable due to the severe chemical effects of formalin on T1 shortening, and therefore T1 calibration may only be practical from in-vivo human studies
Complete chloroplast genome sequence of Holoparasite Cistanche Deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from Its host Haloxylon Ammodendron (Chenopodiaceae)
The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. The authors report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae
Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV
We report on the rapidity and centrality dependence of proton and anti-proton
transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as
measured by the STAR experiment at RHIC. Our results are from the rapidity and
transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons
and anti-protons, transverse mass distributions become more convex from
peripheral to central collisions demonstrating characteristics of collective
expansion. The measured rapidity distributions and the mean transverse momenta
versus rapidity are flat within |y|<0.5. Comparisons of our data with results
from model calculations indicate that in order to obtain a consistent picture
of the proton(anti-proton) yields and transverse mass distributions the
possibility of pre-hadronic collective expansion may have to be taken into
account.Comment: 4 pages, 3 figures, 1 table, submitted to PR
- …
