9 research outputs found

    Assessment of brain age in posttraumatic stress disorder: Findings from the ENIGMA PTSD and brain age working groups

    Get PDF
    BACKGROUND: Posttraumatic stress disorder (PTSD) is associated with markers of accelerated aging. Estimates of brain age, compared to chronological age, may clarify the effects of PTSD on the brain and may inform treatment approaches targeting the neurobiology of aging in the context of PTSD. METHOD: Adult subjects (N = 2229; 56.2% male) aged 18-69 years (mean = 35.6, SD = 11.0) from 21 ENIGMA-PGC PTSD sites underwent T1-weighted brain structural magnetic resonance imaging, and PTSD assessment (PTSD+, n = 884). Previously trained voxel-wise (brainageR) and region-of-interest (BARACUS and PHOTON) machine learning pipelines were compared in a subset of control subjects (n = 386). Linear mixed effects models were conducted in the full sample (those with and without PTSD) to examine the effect of PTSD on brain predicted age difference (brain PAD; brain age - chronological age) controlling for chronological age, sex, and scan site. RESULTS: BrainageR most accurately predicted brain age in a subset (n = 386) of controls (brainageR: ICC = 0.71, R = 0.72, MAE = 5.68; PHOTON: ICC = 0.61, R = 0.62, MAE = 6.37; BARACUS: ICC = 0.47, R = 0.64, MAE = 8.80). Using brainageR, a three-way interaction revealed that young males with PTSD exhibited higher brain PAD relative to male controls in young and old age groups; old males with PTSD exhibited lower brain PAD compared to male controls of all ages. DISCUSSION: Differential impact of PTSD on brain PAD in younger versus older males may indicate a critical window when PTSD impacts brain aging, followed by age-related brain changes that are consonant with individuals without PTSD. Future longitudinal research is warranted to understand how PTSD impacts brain aging across the lifespan

    Herpetic whitlow – Eine vernachlässigte Diagnose

    No full text

    Quality-of-life assessment in dementia: the use of DEMQOL and DEMQOL-Proxy total scores

    Get PDF
    Purpose There is a need to determine whether health-related quality-of-life (HRQL) assessments in dementia capture what is important, to form a coherent basis for guiding research and clinical and policy decisions. This study investigated structural validity of HRQL assessments made using the DEMQOL system, with particular interest in studying domains that might be central to HRQL, and the external validity of these HRQL measurements. Methods HRQL of people with dementia was evaluated by 868 self-reports (DEMQOL) and 909 proxy reports (DEMQOL-Proxy) at a community memory service. Exploratory and confirmatory factor analyses (EFA and CFA) were conducted using bifactor models to investigate domains that might be central to general HRQL. Reliability of the general and specific factors measured by the bifactor models was examined using omega (?) and omega hierarchical (? h) coefficients. Multiple-indicators multiple-causes models were used to explore the external validity of these HRQL measurements in terms of their associations with other clinical assessments. Results Bifactor models showed adequate goodness of fit, supporting HRQL in dementia as a general construct that underlies a diverse range of health indicators. At the same time, additional factors were necessary to explain residual covariation of items within specific health domains identified from the literature. Based on these models, DEMQOL and DEMQOL-Proxy overall total scores showed excellent reliability (? h > 0.8). After accounting for common variance due to a general factor, subscale scores were less reliable (? h < 0.7) for informing on individual differences in specific HRQL domains. Depression was more strongly associated with general HRQL based on DEMQOL than on DEMQOL-Proxy (?0.55 vs ?0.22). Cognitive impairment had no reliable association with general HRQL based on DEMQOL or DEMQOL-Proxy. Conclusions The tenability of a bifactor model of HRQL in dementia suggests that it is possible to retain theoretical focus on the assessment of a general phenomenon, while exploring variation in specific HRQL domains for insights on what may lie at the ‘heart’ of HRQL for people with dementia. These data suggest that DEMQOL and DEMQOL-Proxy total scores are likely to be accurate measures of individual differences in HRQL, but that subscale scores should not be used. No specific domain was solely responsible for general HRQL at dementia diagnosis. Better HRQL was moderately associated with less depressive symptoms, but this was less apparent based on informant reports. HRQL was not associated with severity of cognitive impairment

    Assessment of brain age in posttraumatic stress disorder: Findings from the ENIGMA PTSD and brain age working groups

    No full text
    BACKGROUND: Posttraumatic stress disorder (PTSD) is associated with markers of accelerated aging. Estimates of brain age, compared to chronological age, may clarify the effects of PTSD on the brain and may inform treatment approaches targeting the neurobiology of aging in the context of PTSD. METHOD: Adult subjects (N = 2229; 56.2% male) aged 18-69 years (mean = 35.6, SD = 11.0) from 21 ENIGMA-PGC PTSD sites underwent T1-weighted brain structural magnetic resonance imaging, and PTSD assessment (PTSD+, n = 884). Previously trained voxel-wise (brainageR) and region-of-interest (BARACUS and PHOTON) machine learning pipelines were compared in a subset of control subjects (n = 386). Linear mixed effects models were conducted in the full sample (those with and without PTSD) to examine the effect of PTSD on brain predicted age difference (brain PAD; brain age - chronological age) controlling for chronological age, sex, and scan site. RESULTS: BrainageR most accurately predicted brain age in a subset (n = 386) of controls (brainageR: ICC = 0.71, R = 0.72, MAE = 5.68; PHOTON: ICC = 0.61, R = 0.62, MAE = 6.37; BARACUS: ICC = 0.47, R = 0.64, MAE = 8.80). Using brainageR, a three-way interaction revealed that young males with PTSD exhibited higher brain PAD relative to male controls in young and old age groups; old males with PTSD exhibited lower brain PAD compared to male controls of all ages. DISCUSSION: Differential impact of PTSD on brain PAD in younger versus older males may indicate a critical window when PTSD impacts brain aging, followed by age-related brain changes that are consonant with individuals without PTSD. Future longitudinal research is warranted to understand how PTSD impacts brain aging across the lifespan

    Cortical volume abnormalities in posttraumatic stress disorder: An ENIGMA-psychiatric genomics consortium PTSD workgroup mega-analysis

    No full text
    Studies of posttraumatic stress disorder (PTSD) report volume abnormalities in multiple regions of the cerebral cortex. However, findings for many regions, particularly regions outside commonly studied emotion-related prefrontal, insular, and limbic regions, are inconsistent and tentative. Also, few studies address the possibility that PTSD abnormalities may be confounded by comorbid depression. A mega-analysis investigating all cortical regions in a large sample of PTSD and control subjects can potentially provide new insight into these issues. Given this perspective, our group aggregated regional volumes data of 68 cortical regions across both hemispheres from 1379 PTSD patients to 2192 controls without PTSD after data were processed by 32 international laboratories using ENIGMA standardized procedures. We examined whether regional cortical volumes were different in PTSD vs. controls, were associated with posttraumatic stress symptom (PTSS) severity, or were affected by comorbid depression. Volumes of left and right lateral orbitofrontal gyri (LOFG), left superior temporal gyrus, and right insular, lingual and superior parietal gyri were significantly smaller, on average, in PTSD patients than controls (standardized coefficients = -0.111 to -0.068, FDR corrected P values < 0.039) and were significantly negatively correlated with PTSS severity. After adjusting for depression symptoms, the PTSD findings in left and right LOFG remained significant. These findings indicate that cortical volumes in PTSD patients are smaller in prefrontal regulatory regions, as well as in broader emotion and sensory processing cortical regions
    corecore