102 research outputs found
Mobile laminar air flow screen for additional operating room ventilation: reduction of intraoperative bacterial contamination during total knee arthroplasty
Background Surgical site infections are important complications in orthopedic surgery. A mobile laminar air flow (LAF) screen could represent a useful addition to an operating room (OR) with conventional turbulent air ventilation (12.5 air changes/h), as it could decrease the bacterial count near the operating field. The purpose of this study was to evaluate LAF efficacy at reducing bacterial contamination in the surgical area during 34 total knee arthroplasties (TKAs). Materials and methods The additional unit was used in 17 operations; the LAF was positioned beside the operating table between two of the surgeons, with the air flow directed towards the surgical area (wound). The whole team wore conventional OR clothing and the correct hygiene procedures and rituals were used. Bacterial air contamination (CFU/m3) was evaluated in the wound area in 17 operations with the LAF unit and 17 without the LAF unit. Results The LAF unit reduced the mean bacterial count in the wound area from 23.5 CFU/m3 without the LAF to 3.5 CFU/m3 with the LAF (P<0.0001), which is below the suggested limit for anORwith ultraclean laminar ventilation. There were no significant differences in the mean bacterial count in the instrument table area: 28.6 CFU/m3 were recorded with the LAF (N = 6) unit and 30.8 CFU/m3 (N = 6) without the LAF unit (P = 0.631). During six operations with LAF and six without LAF, particle counts were performed and the number of 0.5 lm particles was analyzed. The particle counts decreased significantly when the LAF unit was used (P = 0.003). Conclusion When a mobile LAF unit was added to the standard OR ventilation, bacterial contamination of the wound area significantly decreased to below the accepted level for an ultraclean OR, preventing SSI infections
Absence of Ataxin-3 Leads to Enhanced Stress Response in C. elegans
Ataxin-3, the protein involved in Machado-Joseph disease, is able to bind ubiquitylated substrates and act as a deubiquitylating enzyme in vitro, and it has been involved in the modulation of protein degradation by the ubiquitin-proteasome pathway. C. elegans and mouse ataxin-3 knockout models are viable and without any obvious phenotype in a basal condition however their phenotype in stress situations has never been described
Impact of Dendritic Size and Dendritic Topology on Burst Firing in Pyramidal Cells
Neurons display a wide range of intrinsic firing patterns. A particularly relevant pattern for neuronal signaling and synaptic plasticity is burst firing, the generation of clusters of action potentials with short interspike intervals. Besides ion-channel composition, dendritic morphology appears to be an important factor modulating firing pattern. However, the underlying mechanisms are poorly understood, and the impact of morphology on burst firing remains insufficiently known. Dendritic morphology is not fixed but can undergo significant changes in many pathological conditions. Using computational models of neocortical pyramidal cells, we here show that not only the total length of the apical dendrite but also the topological structure of its branching pattern markedly influences inter- and intraburst spike intervals and even determines whether or not a cell exhibits burst firing. We found that there is only a range of dendritic sizes that supports burst firing, and that this range is modulated by dendritic topology. Either reducing or enlarging the dendritic tree, or merely modifying its topological structure without changing total dendritic length, can transform a cell's firing pattern from bursting to tonic firing. Interestingly, the results are largely independent of whether the cells are stimulated by current injection at the soma or by synapses distributed over the dendritic tree. By means of a novel measure called mean electrotonic path length, we show that the influence of dendritic morphology on burst firing is attributable to the effect both dendritic size and dendritic topology have, not on somatic input conductance, but on the average spatial extent of the dendritic tree and the spatiotemporal dynamics of the dendritic membrane potential. Our results suggest that alterations in size or topology of pyramidal cell morphology, such as observed in Alzheimer's disease, mental retardation, epilepsy, and chronic stress, could change neuronal burst firing and thus ultimately affect information processing and cognition
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Pathogenetic mechanisms in vascular dementia
Vascular dementia accounts for approximately 20% of all cases of dementia and for about 50% in subjects over 80 years. Thromboembolism with multiple cerebral infarcts was considered to be almost the only pathogenetic pathway of vascular dementia, with multi-infarct dementia as its clinical manifestation. However, there is a great heterogeneity of vascular dementia syndromes and pathological subtypes, as documented by the number of pathogenetic mechanisms now known to underlie the clinical picture. They include thromboembolism and extracerebral and cerebral factors. Among the extracerebral factors are ischemic hypoxic dementia (i.e., dementia due to hypoperfusion), vasculitis, hyperviscosity and abnormalities of hemostasis. Among the cerebral factors are lipohyalinosis, cerebral amyloid angiopathy, disruption of the blood-brain barrier and altered regulation of cerebral blood flow. Therefore, the approach to vascular dementia should take the heterogeneity into account. In this context, the importance of non-infarct type should be considered; subcortical white matter disorder seems to be a noteworthy common pathway of vascular dementia produced by various vascular mechanisms. Finally, the heterogeneity of the vascular mechanisms involved in vascular dementia-namely hypoperfusion-might be a factor that can be positively influenced by targeted therapeutic intervention
Alterations of Neuronal Connectivity in Area CA1 of Hippocampal Slices from Temporal Lobe Epilepsy Patients and from Pilocarpine-Treated Epileptic Rats
A subset of calretinin-positive neurons are abnormal in Alzheimer's disease.
The distribution of the calcium-binding protein calretinin was investigated by immunohistochemistry in the hippocampus, the subicular areas, and the entorhinal cortex in patients with Alzheimer's disease and in control subjects. By double immunolabelling, the calretinin immunoreactivity was compared to the immunoreactivity for beta/A4 amyloid or for tau proteins. Calretinin-positive neurons were mainly observed in the molecular layer of the gyrus dentatus, the stratum radiatum of the Ammon's horn, and in layers II and III of the entorhinal cortex. The general pattern of calretinin immunoreactivity was conserved in Alzheimer's disease. Calretinin-positive neurons appeared normal in the hippocampus but had a reduced dendritic tree in the entorhinal cortex. Dystrophic calretinin immunoreactive fibres were often observed in the outer molecular layer of the gyrus dentatus and in the CA4 sector in Alzheimer's disease. Most neurons containing neurofibrillary tangles were not calretinin immunoreactive and most senile plaques were not associated with calretinin positive fibres. These results show that entorhinal calretinin-positive neurons are affected in Alzheimer's disease in spite of an absence of systematic association with neurofibrillary tangles and senile plaques.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
Immobilizing performances, comfort, and user-friendliness of the shoulder abduction-external rotation braces
- …
