1,062 research outputs found
Dynamic laryngeal narrowing during exercise: a mechanism for generating intrinsic PEEP in COPD?
INTRODUCTION: Patients with COPD commonly exhibit pursed-lip breathing during exercise, a strategy that, by increasing intrinsic positive end-expiratory pressure, may optimise lung mechanics and exercise tolerance. A similar role for laryngeal narrowing in modulating exercise airways resistance and the respiratory cycle volume–time course is postulated, yet remains unstudied in COPD. The aim of this study was to assess the characteristics of laryngeal narrowing and its role in exercise intolerance and dynamic hyperinflation in COPD. METHODS: We studied 19 patients (n=8 mild–moderate; n=11 severe COPD) and healthy age and sex matched controls (n=11). Baseline physiological characteristics and clinical status were assessed prior to an incremental maximal cardiopulmonary exercise test with continuous laryngoscopy. Laryngeal narrowing measures were calculated at the glottic and supra-glottic aperture at rest and peak exercise. RESULTS: At rest, expiratory laryngeal narrowing was pronounced at the glottic level in patients and related to FEV(1) in the whole cohort (r=−0.71, p<0.001) and patients alone (r=−0.53, p=0.018). During exercise, glottic narrowing was inversely related to peak ventilation in all subjects (r=−0.55, p=0.0015) and patients (r=−0.71, p<0.001) and peak exercise tidal volume (r=−0.58, p=0.0062 and r=−0.55, p=0.0076, respectively). Exercise glottic narrowing was also inversely related to peak oxygen uptake (% predicted) in all subjects (r=−0.65, p<0.001) and patients considered alone (r=−0.58, p=0.014). Exercise inspiratory duty cycle was related to exercise glottic narrowing for all subjects (r=−0.69, p<0.001) and patients (r=−0.62, p<0.001). CONCLUSIONS: Dynamic laryngeal narrowing during expiration is prevalent in patients with COPD and is related to disease severity, respiratory duty cycle and exercise capacity
On the Interface Formation Model for Dynamic Triple Lines
This paper revisits the theory of Y. Shikhmurzaev on forming interfaces as a
continuum thermodynamical model for dynamic triple lines. We start with the
derivation of the balances for mass, momentum, energy and entropy in a
three-phase fluid system with full interfacial physics, including a brief
review of the relevant transport theorems on interfaces and triple lines.
Employing the entropy principle in the form given in [Bothe & Dreyer, Acta
Mechanica, doi:10.1007/s00707-014-1275-1] but extended to this more general
case, we arrive at the entropy production and perform a linear closure, except
for a nonlinear closure for the sorption processes. Specialized to the
isothermal case, we obtain a thermodynamically consistent mathematical model
for dynamic triple lines and show that the total available energy is a strict
Lyapunov function for this system
Young women's use of a microbicide surrogate: The complex influence of relationship characteristics and perceived male partners' evaluations
This is the post-print version of the article. The official published version can be found at the link below.Currently in clinical trials, vaginal microbicides are proposed as a female-initiated method of sexually transmitted infection prevention. Much of microbicide acceptability research has been conducted outside of the United States and frequently without consideration of the social interaction between sex partners, ignoring the complex gender and power structures often inherent in young women’s (heterosexual) relationships. Accordingly, the purpose of this study was to build on existing microbicide research by exploring the role of male partners and relationship characteristics on young women’s use of a microbicide surrogate, an inert vaginal moisturizer (VM), in a large city in the United States. Individual semi-structured interviews were conducted with 40 young women (18–23 years old; 85% African American; 47.5% mothers) following use of the VM during coital events for a 4 week period. Overall, the results indicated that relationship dynamics and perceptions of male partners influenced VM evaluation. These two factors suggest that relationship context will need to be considered in the promotion of vaginal microbicides. The findings offer insights into how future acceptability and use of microbicides will be influenced by gendered power dynamics. The results also underscore the importance of incorporating men into microbicide promotion efforts while encouraging a dialogue that focuses attention on power inequities that can exist in heterosexual relationships. Detailed understanding of these issues is essential for successful microbicide acceptability, social marketing, education, and use.This study was funded by a grant from National Institutes of Health (NIHU19AI 31494) as well as research awards to the first author: Friends of the Kinsey Institute Research Grant Award, Indiana University’s School of HPER Graduate Student Grant-in-Aid of Research Award, William L. Yarber Sexual Health Fellowship, and the Indiana University Graduate and Professional Student Organization Research Grant
Exclusive neuronal expression of SUCLA2 in the human brain
SUCLA2 encodes the ATP-forming subunit (A-SUCL-) of succinyl-CoA ligase, an enzyme of the citric acid cycle. Mutations in SUCLA2 lead to a mitochondrial disorder manifesting as encephalomyopathy with dystonia, deafness and lesions in the basal ganglia. Despite the distinct brain pathology associated with SUCLA2 mutations, the precise localization of SUCLA2 protein has never been investigated. Here we show that immunoreactivity of A-SUCL- in surgical human cortical tissue samples was present exclusively in neurons, identified by their morphology and visualized by double labeling with a fluorescent Nissl dye. A-SUCL- immunoreactivity co-localized >99% with that of the d subunit of the mitochondrial F0-F1 ATP synthase. Specificity of the anti-A-SUCL- antiserum was verified by the absence of labeling in fibroblasts from a patient with a complete deletion of SUCLA2. A-SUCL- immunoreactivity was absent in glial cells, identified by antibodies directed against the glial markers GFAP and S100. Furthermore, in situ hybridization histochemistry demonstrated that SUCLA2 mRNA was present in Nissl-labeled neurons but not glial cells labeled with S100. Immunoreactivity of the GTP-forming subunit (G-SUCL-) encoded by SUCLG2, or in situ hybridization histochemistry for SUCLG2 mRNA could not be demonstrated in either neurons or astrocytes. Western blotting of post mortem brain samples revealed minor G-SUCL- immunoreactivity that was however, not upregulated in samples obtained from diabetic versus non-diabetic patients, as has been described for murine brain. Our work establishes that SUCLA2 is expressed exclusively in neurons in the human cerebral cortex
Genetic diversity of Brazilian isolates of feline immunodeficiency virus
We isolated Feline immunodeficiency virus (FIV) from three adult domestic cats, originating from two open shelters in Brazil. Viruses were isolated from PBMC following co-cultivation with the feline T-lymphoblastoid cell line MYA-1. All amplified env gene products were cloned directly into pGL8MYA. The nucleic acid sequences of seven clones were determined and then compared with those of previously described isolates. The sequences of all of the Brazilian virus clones were distinct and phylogenetic analysis revealed that all belong to subtype B. Three variants isolated from one cat and two variants were isolated from each of the two other cats, indicating that intrahost diversity has the potential to pose problems for the treatment and diagnosis of FIV infection
Recommended from our members
A new interpretation of total column BrO during Arctic spring
Emission of bromine from sea-salt aerosol, frost flowers, ice leads, and snow results in the nearly complete removal of surface ozone during Arctic spring. Regions of enhanced total column BrO observed by satellites have traditionally been associated with these emissions. However, airborne measurements of BrO and O3 within the convective boundary layer (CBL) during the ARCTAS and ARCPAC field campaigns at times bear little relation to enhanced column BrO. We show that the locations of numerous satellite BrO "hotspots" during Arctic spring are consistent with observations of total column ozone and tropopause height, suggesting a stratospheric origin to these regions of elevated BrO. Tropospheric enhancements of BrO large enough to affect the column abundance are also observed, with important contributions originating from above the CBL. Closure of the budget for total column BrO, albeit with significant uncertainty, is achieved by summing observed tropospheric partial columns with calculated stratospheric partial columns provided that natural, short-lived biogenic bromocarbons supply between 5 and 10 ppt of bromine to the Arctic lowermost stratosphere. Proper understanding of bromine and its effects on atmospheric composition requires accurate treatment of geographic variations in column BrO originating from both the stratosphere and troposphere. Copyright 2010 by the American Geophysical Union
Genetic Background Can Result in a Marked or Minimal Effect of Gene Knockout (GPR55 and CB2 Receptor) in Experimental Autoimmune Encephalomyelitis Models of Multiple Sclerosis
PMCID: PMC379391
Effects of anisotropic interactions on the structure of animal groups
This paper proposes an agent-based model which reproduces different
structures of animal groups. The shape and structure of the group is the effect
of simple interaction rules among individuals: each animal deploys itself
depending on the position of a limited number of close group mates. The
proposed model is shown to produce clustered formations, as well as lines and
V-like formations. The key factors which trigger the onset of different
patterns are argued to be the relative strength of attraction and repulsion
forces and, most important, the anisotropy in their application.Comment: 22 pages, 9 figures. Submitted. v1-v4: revised presentation; extended
simulations; included technical results. v5: added a few clarification
Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses
The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined
Recommended from our members
Letter processing and font information during reading: beyond distinctiveness, where vision meets design
Letter identification is a critical front end of the
reading process. In general, conceptualizations of the identification process have emphasized arbitrary sets of distinctive features. However, a richer view of letter processing incorporates principles from the field of type design, including an emphasis on uniformities across letters within a font. The importance of uniformities is supported by a small body of research indicating that consistency of font increases letter identification efficiency. We review design concepts and the relevant literature, with the goal of stimulating further thinking about letter processing during reading
- …
