543 research outputs found
Investigating the Evolutionary Dynamics of Drug Resistance in Colorectal Cancer
PhD ThesesCancer resistance evolution was presumed to result from either a pre-existing or acquired mutation that survives treatment, re-populating the tumour following therapy. However, it appears cancer cells can adopt both genetic and non-genetic mechanisms to evade treatment, and a much broader range of evolutionary scenarios could drive resistance evolution.
Here, I first develop models that explicitly capture both genetic and non-genetic
sources of phenotypic variation in cell populations evolving resistance to therapy. I show that, given different parameters controlling the change in a resistance phenotype per division and the relative fitness cost of resistance, I can distinguish between various evolutionary scenarios, including those that lead to the same proportion of resistance. I subsequently combine these theoretical models with a long-term drug-treatment
experiment in vitro: I employ a high-resolution lineage tracing technique and metronomic chemotherapy exposure in two colorectal cancer cell models. In one cell-line - HCT116 - the lineage distributions are consistent with a resistance phenotype being held at a low frequency by a high reversion phenotypic switching
rate, or a high relative fitness cost. The other cell-line – SW620 – exhibits a response that is consistent with a broad range of evolutionary scenarios, all of which have relatively lower switching rates and fitness costs, whilst maintaining the resistant phenotype at a higher frequency within the population.
My data show a role for either plasticity or a high fitness cost in the evolution of drug resistance in these colorectal cancer cell models. These results highlight the importance of including the diverse evolutionary scenarios that produce phenotypic differences within the population when modelling cancer cells' response to therapy. As stymieing resistance requires hampering a tumour's evolution, I argue that
designing more effective treatment strategies will depend on accurately describing these diverse routes to resistance
Genetics of decayed sexual traits in a parasitoid wasp with endosymbiont-induced asexuality.
Trait decay may occur when selective pressures shift, owing to changes in environment or life style, rendering formerly adaptive traits non-functional or even maladaptive. It remains largely unknown if such decay would stem from multiple mutations with small effects or rather involve few loci with major phenotypic effects. Here, we investigate the decay of female sexual traits, and the genetic causes thereof, in a transition from haplodiploid sexual reproduction to endosymbiont-induced asexual reproduction in the parasitoid wasp Asobara japonica. We take advantage of the fact that asexual females cured of their endosymbionts produce sons instead of daughters, and that these sons can be crossed with sexual females. By combining behavioral experiments with crosses designed to introgress alleles from the asexual into the sexual genome, we found that sexual attractiveness, mating, egg fertilization and plastic adjustment of offspring sex ratio (in response to variation in local mate competition) are decayed in asexual A. japonica females. Furthermore, introgression experiments revealed that the propensity for cured asexual females to produce only sons (because of decayed sexual attractiveness, mating behavior and/or egg fertilization) is likely caused by recessive genetic effects at a single locus. Recessive effects were also found to cause decay of plastic sex-ratio adjustment under variable levels of local mate competition. Our results suggest that few recessive mutations drive decay of female sexual traits, at least in asexual species deriving from haplodiploid sexual ancestors
Design Characteristics Influence Performance of Clinical Prediction Rules in Validation: A Meta-Epidemiological Study
BACKGROUND: Many new clinical prediction rules are derived and validated. But the design and reporting quality of clinical prediction research has been less than optimal. We aimed to assess whether design characteristics of validation studies were associated with the overestimation of clinical prediction rules' performance. We also aimed to evaluate whether validation studies clearly reported important methodological characteristics.
METHODS: Electronic databases were searched for systematic reviews of clinical prediction rule studies published between 2006 and 2010. Data were extracted from the eligible validation studies included in the systematic reviews. A meta-analytic meta-epidemiological approach was used to assess the influence of design characteristics on predictive performance. From each validation study, it was assessed whether 7 design and 7 reporting characteristics were properly described.
RESULTS: A total of 287 validation studies of clinical prediction rule were collected from 15 systematic reviews (31 meta-analyses). Validation studies using case-control design produced a summary diagnostic odds ratio (DOR) 2.2 times (95% CI: 1.2-4.3) larger than validation studies using cohort design and unclear design. When differential verification was used, the summary DOR was overestimated by twofold (95% CI: 1.2 -3.1) compared to complete, partial and unclear verification. The summary RDOR of validation studies with inadequate sample size was 1.9 (95% CI: 1.2 -3.1) compared to studies with adequate sample size. Study site, reliability, and clinical prediction rule was adequately described in 10.1%, 9.4%, and 7.0% of validation studies respectively.
CONCLUSION: Validation studies with design shortcomings may overestimate the performance of clinical prediction rules. The quality of reporting among studies validating clinical prediction rules needs to be improved
Fortnightly changes in water transport direction across the mouth of a narrow estuary
This research investigates the dynamics of the axial
tidal flow and residual circulation at the lower Guadiana
Estuary, south Portugal, a narrow mesotidal estuary with low
freshwater inputs. Current data were collected near the deepest
part of the channel for 21 months and across the channel
during two (spring and neap) tidal cycles. Results indicate
that at the deep channel, depth-averaged currents are stronger
and longer during the ebb at spring and during the flood at
neap, resulting in opposite water transport directions at a
fortnightly time scale. The net water transport across the entire
channel is up-estuary at spring and down-estuary at neap, i.e.,
opposite to the one at the deep channel. At spring tide, when
the estuary is considered to be well mixed, the observed
pattern of circulation (outflow in the deep channel, inflow
over the shoals) results from the combination of the Stokes
transport and compensating return flow, which varies laterally
with the bathymetry. At neap tide (in particular for those of
lowest amplitude each month), inflows at the deep channel are
consistently associated with the development of gravitational
circulation. Comparisons with previous studies suggest that
the baroclinic pressure gradient (rather than internal tidal
asymmetries) is the main driver of the residual water transport.
Our observations also indicate that the flushing out of the
water accumulated up-estuary (at spring) may also produce
strong unidirectional barotropic outflow across the entire
channel around neap tide.info:eu-repo/semantics/publishedVersio
Production of CXC and CC chemokines by human antigen-presenting cells in response to Lassa virus or closely related immunogenic viruses, and in cynomolgus monkeys with lassa fever.
International audienceThe pathogenesis of Lassa fever (LF), a hemorrhagic fever endemic to West Africa, remains unclear. We previously compared Lassa virus (LASV) with its genetically close, but nonpathogenic homolog Mopeia virus (MOPV) and demonstrated that the strong activation of antigen-presenting cells (APC), including type I IFN production, observed in response to MOPV probably plays a crucial role in controlling infection. We show here that human macrophages (MP) produce large amounts of CC and CXC chemokines in response to MOPV infection, whereas dendritic cells (DC) release only moderate amounts of CXC chemokines. However, in the presence of autologous T cells, DCs produced CC and CXC chemokines. Chemokines were produced in response to type I IFN synthesis, as the levels of both mediators were strongly correlated and the neutralization of type I IFN resulted in an inhibition of chemokine production. By contrast, LASV induced only low levels of CXCL-10 and CXCL-11 production. These differences in chemokine production may profoundly affect the generation of virus-specific T-cell responses and may therefore contribute to the difference of pathogenicity between these two viruses. In addition, a recombinant LASV (rLASV) harboring the NP-D389A/G392A mutations, which abolish the inhibition of type I IFN response by nucleoprotein (NP), induced the massive synthesis of CC and CXC chemokines in both DC and MP, confirming the crucial role of arenavirus NP in immunosuppression and pathogenicity. Finally, we confirmed, using PBMC samples and lymph nodes obtained from LASV-infected cynomolgus monkeys, that LF was associated with high levels of CXC chemokine mRNA synthesis, suggesting that the very early synthesis of these mediators may be correlated with a favourable outcome
A systematic review and meta-analysis to determine the contribution of mr imaging to the diagnosis of foetal brain abnormalities In Utero.
OBJECTIVES: This systematic review was undertaken to define the diagnostic performance of in utero MR (iuMR) imaging when attempting to confirm, exclude or provide additional information compared with the information provided by prenatal ultrasound scans (USS) when there is a suspicion of foetal brain abnormality. METHODS: Electronic databases were searched as well as relevant journals and conference proceedings. Reference lists of applicable studies were also explored. Data extraction was conducted by two reviewers independently to identify relevant studies for inclusion in the review. Inclusion criteria were original research that reported the findings of prenatal USS and iuMR imaging and findings in terms of accuracy as judged by an outcome reference diagnosis for foetal brain abnormalities. RESULTS: 34 studies met the inclusion criteria which allowed diagnostic accuracy to be calculated in 959 cases, all of which had an outcome reference diagnosis determined by postnatal imaging, surgery or autopsy. iuMR imaging gave the correct diagnosis in 91 % which was an increase of 16 % above that achieved by USS alone. CONCLUSION: iuMR imaging makes a significant contribution to the diagnosis of foetal brain abnormalities, increasing the diagnostic accuracy achievable by USS alone. KEY POINTS: • Ultrasound is the primary modality for monitoring foetal brain development during pregnancy • iuMRI used together with ultrasound is more accurate for detecting foetal brain abnormalities • iuMR imaging is most helpful for detecting midline brain abnormalities • The moderate heterogeneity of reviewed studies may compromise findings
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Bidirectional incompatibility among divergent Wolbachia and incompatibility level differences among closely related Wolbachia in Nasonia
Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Heredity 99 (2007): 278–287, doi:10.1038/sj.hdy.6800994.Most insect groups harbor obligate bacterial symbionts from the alphaproteobacterial
genus Wolbachia. These bacteria alter insect reproduction in ways that
enhance their cytoplasmic transmission. One of the most common alterations is
cytoplasmic incompatibility (CI) - a post-fertilization modification of the paternal
genome that renders embryos inviable or unable to complete diploid development in
crosses between infected males and uninfected females or infected females harboring a
different strain. The parasitic wasp species complex Nasonia (N. vitripennis, N.
longicornis, and N. giraulti) harbor at least six different Wolbachia that cause
cytoplasmic incompatibility. Each species have double infections with a representative
from both the A and B Wolbachia subgroups. CI relationships of the A and B Wolbachia
of N. longicornis with those of N. giraulti and N. vitripennis are investigated here. We
demonstrate that all pairwise crosses between the divergent A strains are bidirectionally
incompatible. We were unable to characterize incompatibility between the B Wolbachia,
but we establish that the B strain of N. longicornis induces no or very weak CI in
comparison to the closely related B strain in N. giraulti that expresses complete CI.
Taken together with previous studies, we show that independent acquisition of divergent
A Wolbachia has resulted in three mutually incompatible strains, while codivergence of B
Wolbachia in N. longicornis and N. giraulti is associated with differences in CI level.
Understanding the diversity and evolution of new incompatibility strains will contribute
to a fuller understanding of Wolbachia invasion dynamics and Wolbachia-assisted
speciation in certain groups of insects.This work was supported by grant EF-0328363 and DEB-9981634 from the
National Science Foundation to J.H.W. and an Ernst Caspari Research Fellowship to
S.R.B while he was at the University of Rochester. S.R.B. acknowledges support from
the NASA Astrobiology Institute (NNA04CC04A)
Genetics of decayed sexual traits in a parasitoid wasp with endosymbiont-induced asexuality
Trait decay may occur when selective pressures shift, owing to changes in environment or life style, rendering formerly adaptive traits non-functional or even maladaptive. It remains largely unknown if such decay would stem from multiple mutations with small effects or rather involve few loci with major phenotypic effects. Here, we investigate the decay of female sexual traits, and the genetic causes thereof, in a transition from haplodiploid sexual reproduction to endosymbiont-induced asexual reproduction in the parasitoid wasp Asobara japonica. We take advantage of the fact that asexual females cured of their endosymbionts produce sons instead of daughters, and that these sons can be crossed with sexual females. By combining behavioral experiments with crosses designed to introgress alleles from the asexual into the sexual genome, we found that sexual attractiveness, mating, egg fertilization and plastic adjustment of offspring sex ratio (in response to variation in local mate competition) are decayed in asexual A. japonica females. Furthermore, introgression experiments revealed that the propensity for cured asexual females to produce only sons (because of decayed sexual attractiveness, mating behavior and/or egg fertilization) is likely caused by recessive genetic effects at a single locus. Recessive effects were also found to cause decay of plastic sex-ratio adjustment under variable levels of local mate competition. Our results suggest that few recessive mutations drive decay of female sexual traits, at least in asexual species deriving from haplodiploid sexual ancestors
- …
