1,666 research outputs found

    Fuzzy Supernova Templates I: Classification

    Full text link
    Modern supernova (SN) surveys are now uncovering stellar explosions at rates that far surpass what the world's spectroscopic resources can handle. In order to make full use of these SN datasets, it is necessary to use analysis methods that depend only on the survey photometry. This paper presents two methods for utilizing a set of SN light curve templates to classify SN objects. In the first case we present an updated version of the Bayesian Adaptive Template Matching program (BATM). To address some shortcomings of that strictly Bayesian approach, we introduce a method for Supernova Ontology with Fuzzy Templates (SOFT), which utilizes Fuzzy Set Theory for the definition and combination of SN light curve models. For well-sampled light curves with a modest signal to noise ratio (S/N>10), the SOFT method can correctly separate thermonuclear (Type Ia) SNe from core collapse SNe with 98% accuracy. In addition, the SOFT method has the potential to classify supernovae into sub-types, providing photometric identification of very rare or peculiar explosions. The accuracy and precision of the SOFT method is verified using Monte Carlo simulations as well as real SN light curves from the Sloan Digital Sky Survey and the SuperNova Legacy Survey. In a subsequent paper the SOFT method is extended to address the problem of parameter estimation, providing estimates of redshift, distance, and host galaxy extinction without any spectroscopy.Comment: 26 pages, 12 figures. Accepted to Ap

    Near-infrared observations of type Ia supernovae: The best known standard candle for cosmology

    Get PDF
    We present an analysis of the Hubble diagram for 12 Type Ia supernovae (SNe Ia) observed in the near-infrared J and H bands. We select SNe exclusively from the redshift range 0.03 < z < 0.09 to reduce uncertainties coming from peculiar velocities while remaining in a cosmologically well-understood region. All of the SNe in our sample exhibit no spectral or B-band light-curve peculiarities and lie in the B-band stretch range of 0.8-1.15. Our results suggest that SNe Ia observed in the near-infrared (NIR) are the best known standard candles. We fit previously determined NIR light-curve templates to new high-precision data to derive peak magnitudes and to determine the scatter about the Hubble line. Photometry of the 12 SNe is presented in the natural system. Using a standard cosmology of (H_0, Omega_m, Lambda) = (70,0.27,0.73) we find a median J-band absolute magnitude of M_J = -18.39 with a scatter of 0.116 and a median H-band absolute magnitude of M_H = -18.36 with a scatter of 0.085. The scatter in the H band is the smallest yet measured. We search for correlations between residuals in the J- and H-band Hubble diagrams and SN properties, such as SN colour, B-band stretch and the projected distance from host-galaxy centre. The only significant correlation is between the J-band Hubble residual and the J-H pseudo-colour. We also examine how the scatter changes when fewer points in the near-infrared are used to constrain the light curve. With a single point in the H band taken anywhere from 10 days before to 15 days after B-band maximum light and a prior on the date of H-band maximum set from the date of B-band maximum, we find that we can measure distances to an accuracy of 6%. The precision of SNe Ia in the NIR provides new opportunities for precision measurements of both the expansion history of the universe and peculiar velocities of nearby galaxies.Comment: 6 pages, 2 figures. Accepted for publication in MNRA

    Quantifying Spectral Features of Type Ia Supernovae

    Get PDF
    We introduce a new technique to quantify highly structured spectra for which the definition of continua or spectral features in the observed flux spectra is difficult. The method employs wavelet transformation which allows the decomposition of the observed spectra into different scales. A procedure is formulated to define the strength of spectral features so that the measured spectral indices are independent of the flux levels and are insensitive to the definition of continuum and also to reddening. This technique is applied to Type Ia supernovae spectra, where correlations are revealed between the luminosity and spectral features. The current technique may allow for luminosity corrections based on spectral features in the use of Type Ia supernovae as cosmological probe.Comment: 35 pages, 15 figure

    Distance to the Active Galaxy NGC 6951 via the Type Ia Supernova 2000E

    Get PDF
    CCD-photometry and low-resolution spectroscopy of the bright supernova SN 2000E in NGC 6951 are presented. Both the light curve extending up to 150 days past maximum and the spectra obtained at 1 month past maximum confirm that SN 2000E is of Type Ia. The reddening of SN 2000E is determined as E(B-V)=0.36+/-0.15, its error is mainly due to uncertainties in the predicted SN (B-V) colour at late epochs. The V(RI)_C light curves are analyzed with the Multi-Colour Light Curve Shape (MLCS) method. The shape of the late light curve suggests that SN 2000E was overluminous by about 0.5 mag at maximum comparing with a fiducial SN Ia. This results in an updated distance of 33+/-8 Mpc of NGC 6951 (corrected for interstellar absorption). The SN-based distance modulus is larger by about +0.7 mag than the previous Tully-Fisher estimates. However, possible systematic errors due to ambiguities in the reddening determination and estimates of the maximum luminosity of SN 2000E may plague the present distance measurement.Comment: 9 p., 5 figs, accepted for publication in A&A. A reference correcte

    The Spectroscopic Diversity of Type Ia Supernovae

    Full text link
    We present 2603 spectra of 462 nearby Type Ia supernovae (SN Ia) obtained during 1993-2008 through the Center for Astrophysics Supernova Program. Most of the spectra were obtained with the FAST spectrograph at the FLWO 1.5m telescope and reduced in a consistent manner, making data set well suited for studies of SN Ia spectroscopic diversity. We study the spectroscopic and photometric properties of SN Ia as a function of spectroscopic class using the classification schemes of Branch et al. and Wang et al. The width-luminosity relation appears to be steeper for SN Ia with broader lines. Based on the evolution of the characteristic Si II 6355 line, we propose improved methods for measuring velocity gradients, revealing a larger range than previously suspected, from ~0 to ~400 km/s/day considering the instantaneous velocity decline rate at maximum light. We find a weaker and less significant correlation between Si II velocity and intrinsic B-V color at maximum light than reported by Foley et al., owing to a more comprehensive treatment of uncertainties and host galaxy dust. We study the extent of nuclear burning and report new detections of C II 6580 in 23 early-time spectra. The frequency of C II detections is not higher in SN Ia with bluer colors or narrower light curves, in conflict with the recent results of Thomas et al. Based on nebular spectra of 27 SN Ia, we find no relation between the FWHM of the iron emission feature at ~4700 A and Dm15(B) after removing the two low-luminosity SN 1986G and SN 1991bg, suggesting that the peak luminosity is not strongly dependent on the kinetic energy of the explosion for most SN Ia. Finally, we confirm the correlation of velocity shifts in some nebular lines with the intrinsic B-V color of SN Ia at maximum light, although several outliers suggest a possible non-monotonic behavior for the largest blueshifts.Comment: 36 pages (emulateapj), 23 figures. Accepted for publication in AJ. Spectroscopic data available at http://www.cfa.harvard.edu/supernova/SNarchive.html . New SNID template set available at http://marwww.in2p3.fr/~blondin/software/snid/index.html . Minor changes from v1 to conform to published versio

    SN 2006bt: A Perplexing, Troublesome, and Possibly Misleading Type Ia Supernova

    Full text link
    SN 2006bt displays characteristics unlike those of any other known Type Ia supernova (SN Ia). We present optical light curves and spectra of SN 2006bt which demonstrate the peculiar nature of this object. SN 2006bt has broad, slowly declining light curves indicative of a hot, high-luminosity SN, but lacks a prominent second maximum in the i band as do low-luminosity SNe Ia. Its spectra are similar to those of low-luminosity SNe Ia, containing features that are only present in cool SN photospheres. Light-curve fitting methods suggest that SN 2006bt is reddened by a significant amount of dust; however, it occurred in the outskirts of its early-type host galaxy and has no strong Na D absorption in any of its spectra, suggesting a negligible amount of host-galaxy dust absorption. C II is possibly detected in our pre-maximum spectra, but at a much lower velocity than other elements. The progenitor was likely very old, being a member of the halo population of a galaxy that shows no signs of recent star formation. SNe Ia have been very successfully modeled as a one-parameter family, and this is fundamental to their use as cosmological distance indicators. SN 2006bt is a challenge to that picture, yet its relatively normal light curves allowed SN 2006bt to be included in cosmological analyses. We generate mock SN Ia datasets which indicate that contamination by similar objects will both increase the scatter of a SN Ia Hubble diagram and systematically bias measurements of cosmological parameters. However, spectra and rest-frame i-band light curves should provide a definitive way to identify and eliminate such objects.Comment: ApJ, accepted. 13 pages, 13 figure

    The luminosity of supernovae of type Ia from TRGB distances and the value of H_0

    Full text link
    Distances from the tip of the red-giant branch (TRGB) in the halo Population of galaxies - calibrated through RR Lyr stars as well as tied to Hipparcos parallaxes and further supported by stellar models - are used to determine the luminosity of six nearby type Ia supernovae (SN 2011fe, 2007sr, 1998bu, 1989B, 1972E, and 1937C). The result is M_V^corr = -19.41 +/- 0.05. If this value is applied to 62 SNe Ia with 3000< v < 20,000 km/s a large-scale value of the Hubble constant follows of H_0 = 64.0 +/- 1.6 +/- 2.0. The SN HST Project gave H_0 = 62.3 +/- 1.3 +/- 5.0 from ten Cepheid-calibrated SNe Ia (Sandage et al. 2006). The agreement of young Population I (Cepheids) and old, metal-poor Population II (TRGB) distance indicators is satisfactory. The combined weighted result is H_0 = 63.7 +/- 2.3 (i.e. +/-3.6%). The result can also be reconciled with WMAP5 data (Reid et al. 2010).Comment: 9 pages, 3 figures, 3 tables, accepted for publication in Astronomy and Astrophysic

    Near-Ultraviolet Properties of a Large Sample of Type Ia Supernovae as Observed with the Swift UVOT

    Get PDF
    We present ultraviolet (UV) and optical photometry of 26 Type Ia supernovae (SNe~Ia) observed from March 2005 to March 2008 with the NASA {\it Swift} Ultraviolet and Optical Telescope (UVOT). The dataset consists of 2133 individual observations, making it by far the most complete study of the UV emission from SNe~Ia to date. Grouping the SNe into three subclasses as derived from optical observations, we investigate the evolution of the colors of these SNe, finding a high degree of homogeneity within the normal subclass, but dramatic differences between that group and the subluminous and SN 2002cx-like groups. For the normal events, the redder UV filters on UVOT (uu, uvw1uvw1) show more homogeneity than do the bluer UV filters (uvm2uvm2, uvw2uvw2). Searching for purely UV characteristics to determine existing optically based groupings, we find the peak width to be a poor discriminant, but we do see a variation in the time delay between peak emission and the late, flat phase of the light curves. The UV light curves peak a few days before the BB band for most subclasses (as was previously reported by Jha et al. 2006a), although the SN 2002cx-like objects peak at a very early epoch in the UV. That group also features the bluest emission observed among SNe~Ia. As the observational campaign is ongoing, we discuss the critical times to observe, as determined by this study, in order to maximize the scientific output of future observations.Comment: Accepted to Astrophysical Journa

    Carbon Detection in Early-Time Optical Spectra of Type Ia Supernovae

    Full text link
    While O is often seen in spectra of Type Ia supernovae (SNe Ia) as both unburned fuel and a product of C burning, C is only occasionally seen at the earliest times, and it represents the most direct way of investigating primordial white dwarf material and its relation to SN Ia explosion scenarios and mechanisms. In this paper, we search for C absorption features in 188 optical spectra of 144 low-redshift (z < 0.1) SNe Ia with ages <3.6 d after maximum brightness. These data were obtained as part of the Berkeley SN Ia Program (BSNIP; Silverman et al. 2012) and represent the largest set of SNe Ia in which C has ever been searched. We find that ~11 per cent of the SNe studied show definite C absorption features while ~25 per cent show some evidence for C II in their spectra. Also, if one obtains a spectrum at t < -5 d, then there is a better than 30 per cent chance of detecting a distinct absorption feature from C II. SNe Ia that show C are found to resemble those without C in many respects, but objects with C tend to have bluer optical colours than those without C. The typical expansion velocity of the C II {\lambda}6580 feature is measured to be 12,000-13,000 km/s, and the ratio of the C II {\lambda}6580 to Si II {\lambda}6355 velocities is remarkably constant with time and among different objects with a median value of ~1.05. While the pseudo-equivalent widths (pEWs) of the C II {\lambda}6580 and C II {\lambda}7234 features are found mostly to decrease with time, we see evidence of a significant increase in pEW between ~12 and 11 d before maximum brightness, which is actually predicted by some theoretical models. The range of pEWs measured from the BSNIP data implies a range of C mass in SN Ia ejecta of about (2-30) * 10^-3 M_Sun.Comment: 20 pages, 11 figures, 4 tables, revised version re-submitted to MNRA

    The Subluminous Supernova 2007qd: A Missing Link in a Family of Low-Luminosity Type Ia Supernovae

    Full text link
    We present multi-band photometry and multi-epoch spectroscopy of the peculiar Type Ia supernova (SN Ia) 2007qd, discovered by the SDSS-II Supernova Survey. It possesses physical properties intermediate to those of the peculiar SN 2002cx and the extremely low-luminosity SN 2008ha. Optical photometry indicates that it had an extraordinarily fast rise time of <= 10 days and a peak absolute B magnitude of -15.4 +/- 0.2 at most, making it one of the most subluminous SN Ia ever observed. Follow-up spectroscopy of SN 2007qd near maximum brightness unambiguously shows the presence of intermediate-mass elements which are likely caused by carbon/oxygen nuclear burning. Near maximum brightness, SN 2007qd had a photospheric velocity of only 2800 km/s, similar to that of SN 2008ha but about 4000 and 7000 km/s less than that of SN 2002cx and normal SN Ia, respectively. We show that the peak luminosities of SN 2002cx-like objects are highly correlated with both their light-curve stretch and photospheric velocities. Its strong apparent connection to other SN 2002cx-like events suggests that SN 2007qd is also a pure deflagration of a white dwarf, although other mechanisms cannot be ruled out. It may be a critical link between SN 2008ha and the other members of the SN 2002cx-like class of objects.Comment: To be published in the Astrophysical Journal; 37 pages, 13 figures, 4 table
    corecore