32 research outputs found
Genome-Wide Detection of Allele Specific Copy Number Variation Associated with Insulin Resistance in African Americans from the HyperGEN Study
African Americans have been understudied in genome wide association studies of diabetes and related traits. In the current study, we examined the joint association of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) with fasting insulin and an index of insulin resistance (HOMA-IR) in the HyperGEN study, a family based study with proband ascertainment for hypertension. This analysis is restricted to 1,040 African Americans without diabetes. We generated allele specific CNV genotypes at 872,243 autosomal loci using Birdsuite, a freely available multi-stage program. Joint tests of association for SNPs and CNVs were performed using linear mixed models adjusting for covariates and familial relationships. Our results highlight SNPs associated with fasting insulin and HOMA-IR (rs6576507 and rs8026527, 3.7*10−7≤P≤1.1*10−5) near ATPase, class V, type 10A (ATP10A), and the L Type voltage dependent calcium channel (CACNA1D, rs1401492, P≤5.2*10−6). ATP10A belongs to a family of aminophospholipid-transporting ATPases and has been associated with type 2 diabetes in mice. CACNA1D has been linked to pancreatic beta cell generation in mice. The two most significant copy variable markers (rs10277702 and rs361367; P<2.0*10−4) were in the beta variable region of the T-cell receptor gene (TCRVB). Human and mouse TCR has been shown to mimic insulin and its receptor and could contribute to insulin resistance. Our findings differ from genome wide association studies of fasting insulin and other diabetes related traits in European populations, highlighting the continued need to investigate unique genetic influences for understudied populations such as African Americans
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb
Space Telescope (JWST), as determined from the six month commissioning period.
We summarize the performance of the spacecraft, telescope, science instruments,
and ground system, with an emphasis on differences from pre-launch
expectations. Commissioning has made clear that JWST is fully capable of
achieving the discoveries for which it was built. Moreover, almost across the
board, the science performance of JWST is better than expected; in most cases,
JWST will go deeper faster than expected. The telescope and instrument suite
have demonstrated the sensitivity, stability, image quality, and spectral range
that are necessary to transform our understanding of the cosmos through
observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures;
https://iopscience.iop.org/article/10.1088/1538-3873/acb29
Lecture 8: World's First 10,000 PSI Sour Gas Injection Compressor
Lecturepg. 73-95This paper traces the development of the original sour gas injection (SGI) concept, the methodology used for managing risks, detailed design and testing of compression train components, compressor train shop string tests, and finally testing and operational experience at the Tengiz Field in Kazakhstan. It covers the process that identified the key technical gaps necessary to safely compress combined separator and recompressed sour gas to 10,000 psi (690 bar) with H2S concentrations of 17 to 23 mole percent. Sour gas injection benefits include enhanced oil recovery, reduced capital and operating expenses required for treating acid gas, and elimination of elemental sulfur as a product. The focus of this paper is on the surface facility main reinjection train, including associated critical support systems
Diet-Induced Alteration of the Murine Intestinal Microbiome Following Antibiotic Ablation
High-resolution restriction maps of bacterial artificial chromosomes constructed by optical mapping
Large insert clone libraries have been the primary resource used for the physical mapping of the human genome. Research directions in the genome community now are shifting direction from purely mapping to large-scale sequencing, which in turn, require new standards to be met by physical maps and large insert libraries. Bacterial artificial chromosome libraries offer enormous potential as the chosen substrate for both mapping and sequencing studies. Physical mapping, however, has come under some scrutiny as being “redundant” in the age of large-scale automated sequencing. We report the development and applications of nonelectrophoretic, optical approaches for high-resolution mapping of bacterial artificial chromosome that offer the potential to complement and thereby advance large-scale sequencing projects
