366 research outputs found

    Effects of nutrient addition and soil drainage on germination of N-fixing and non-N-fixing tropical dry forest tree species

    Get PDF
    To develop generalised predictions regarding the effects of atmospheric nitrogen (N) and phosphorus (P) deposition on vegetation communities, it is necessary to account for the impacts of increased nutrient availability on the early life history stages of plants. Additionally, it is important to determine if these responses (a) differ between plant functional groups and (b) are modulated by soil drainage, which may affect the persistence of added nutrients. We experimentally assessed seed germination responses (germination proportion and germination energy, i.e. time to germination) of commonly occurring N-fixing and non-N-fixing tropical dry forest tree species found in India to simulated N and P deposition in well-drained soils, as well as soils with impeded drainage. When soils were not allowed to drain, germination proportion declined with nutrient addition, while germination energy remained unchanged. Stronger declines in germination proportion were observed for N-fixing species. In free-draining soils, nutrient addition did not affect germination proportion in either functional group. However, we detected a trend of delayed germination with nutrient addition, especially in N-fixers. Our results suggest that nutrient deposition can lead to potential shifts in functional dominance and tree community composition of tropical dry forests in the long term through its effects on early life stages of trees, although the mechanisms underlying the observed germination responses remain unclear. Further, such effects are likely to be spatially variable across the geographic range in which tropical dry forests occur depending on soil drainage properties

    Pediatric supracondylar fractures of the distal humerus

    Get PDF
    Supracondylar fractures of the humerus are a common pediatric elbow injury that are historically associated with morbidity due to malunion, neurovascular complications, and compartment syndrome. True anteroposterior and lateral radiographs are essential not only for an accurate diagnosis, but also for creating a treatment plan for these injuries. A staging system (based on the lateral radiograph) for classifying the severity of the fracture helps guide definitive management. Nondisplaced fractures are treated initially with a posterior splint, followed by a long-arm casting. Closed reduction and percutaneous pinning is the preferred treatment for displaced or unstable fractures. If there is any question about fracture stability, patients should be seen within 5 days postoperatively for repeat radiographs to ensure that the reduction and pin fixation has been maintained. Understanding the anatomy, radiographic findings, management options, and complications associated with this fracture allow physicians to limit the morbidity associated with this relatively common pediatric injury

    Human skin penetration of a copper tripeptide in vitro as a function of skin layer

    Get PDF
    Objective and designSkin retention and penetration by copper applied as glycyl-L-histidyl-L-lysine cuprate diacetate was evaluated in vitro in order to assess its potential for its transdermal delivery as an anti-inflammatory agent.Materials and methodsFlow-through diffusion cells with 1 cm(2) exposure area were used under infinite dose conditions. 0.68% aq. copper tripeptide as permeant was applied on isolated stratum corneum, heat-separated epidermis and dermatomed skin and receptor fluid collected over 48 h in 4 h intervals using inductively coupled plasma mass spectrometry to analyze for copper in tissues and receptor fluid.ResultsThe permeability coefficient of the compound through dermatomed skin was 2.43 ± 0.51 × 10(-4) cm/h; 136.2 ± 17.5 μg/cm(2) copper permeated 1 cm(2) of that tissue over 48 h, while 97 ± 6.6 μg/cm(2) were retained as depot.ConclusionsCopper as tripeptide was delivered in potentially therapeutically effective amounts for inflammatory disease
    corecore