1,328 research outputs found

    The role of TcdB and TccC subunits in secretion of the photorhabdus Tcd toxin complex

    Get PDF
    The Toxin Complex (TC) is a large multi-subunit toxin encoded by a range of bacterial pathogens. The best-characterized examples are from the insect pathogens Photorhabdus, Xenorhabdus and Yersinia. They consist of three large protein subunits, designated A, B and C that assemble in a 5:1:1 stoichiometry. Oral toxicity to a range of insects means that some have the potential to be developed as pest control technology. The three subunit proteins do not encode any recognisable export sequences and as such little progress has been made in understanding their secretion. We have developed heterologous TC production and secretion models in E. coli and used them to ascribe functions to different domains of the crucial B+C sub-complex. We have determined that the B and C subunits use a secretion mechanism that is either encoded by the proteins themselves or employ an as yet undefined system common to laboratory strains of E. coli. We demonstrate that both the N-terminal domains of the B and C subunits are required for secretion of the whole complex. We propose a model whereby the N-terminus of the C-subunit toxin exports the B+C sub-complex across the inner membrane while that of the B-subunit allows passage across the outer membrane. We also demonstrate that even in the absence of the B-subunit, that the C-subunit can also facilitate secretion of the larger A-subunit. The recognition of this novel export system is likely to be of importance to future protein secretion studies. Finally, the identification of homologues of B and C subunits in diverse bacterial pathogens, including Burkholderia and Pseudomonas, suggests that these toxins are likely to be important in a range of different hosts, including man

    Inter-rater reliability of the Dysexecutive Questionnaire (DEX): comparative data from non-clinician respondents – all raters are not equal

    Get PDF
    Primary objective: The Dysexecutive Questionnaire (DEX) is used to obtain information about executive and emotional problems after neuropathology. The DEX is self-completed by the patient (DEX-S) and an independent rater such as a family member (DEX-I). This study examined the level of inter-rater agreement between either two or three non-clinician raters on the DEX-I in order to establish the reliability of DEX-I ratings. Methods and procedures: Family members and/or carers of 60 people with mixed neuropathology completed the DEX-I. For each patient, DEX-I ratings were obtained from either two or three raters who knew the person well prior to brain injury. Main outcomes and results: We obtained two independent-ratings for 60 patients and three independent-ratings for 36 patients. Intra-class correlations revealed that there was only a modest level of agreement for items, subscale and total DEX scores between raters for their particular family member. Several individual DEX items had low reliability and ratings for the emotion sub-scale had the lowest level of agreement. Conclusions: Independent DEX ratings completed by two or more non-clinician raters show only moderate correlation. Suggestions are made for improving the reliability of DEX-I ratings.</p

    Potential application of mesh-free SPH method in turbulent river flows

    Get PDF
    A comprehensive review has been completed on the simulation of turbulent flow over rough beds using mesh-free particle models. Based on the outcomes of this review, an improved Smoothed Particle Hydrodynamics (SPH) method has been developed for open channel flows over a rough bed, in which a mixing length model is used for modeling the 2D turbulence and a drag force equation is proposed for treating the boundary shear. The proposed model was applied to simulate a depth-limited open channel flow over a rough bed surface. The results of the velocity profile and shear stress distribution show a good agreement with the experimental data and existing analytical solutions. This work reveals that in order to correctly model turbulent open channel flow over a rough bed, the treatment of both flow turbulence and bed roughness effect is equally important

    Macroscopic effects of the spectral structure in turbulent flows

    Full text link
    Two aspects of turbulent flows have been the subject of extensive, split research efforts: macroscopic properties, such as the frictional drag experienced by a flow past a wall, and the turbulent spectrum. The turbulent spectrum may be said to represent the fabric of a turbulent state; in practice it is a power law of exponent \alpha (the "spectral exponent") that gives the revolving velocity of a turbulent fluctuation (or "eddy") of size s as a function of s. The link, if any, between macroscopic properties and the turbulent spectrum remains missing. Might it be found by contrasting the frictional drag in flows with differing types of spectra? Here we perform unprecedented measurements of the frictional drag in soap-film flows, where the spectral exponent \alpha = 3 and compare the results with the frictional drag in pipe flows, where the spectral exponent \alpha = 5/3. For moderate values of the Reynolds number Re (a measure of the strength of the turbulence), we find that in soap-film flows the frictional drag scales as Re^{-1/2}, whereas in pipe flows the frictional drag scales as Re^{-1/4} . Each of these scalings may be predicted from the attendant value of \alpha by using a new theory, in which the frictional drag is explicitly linked to the turbulent spectrum. Our work indicates that in turbulence, as in continuous phase transitions, macroscopic properties are governed by the spectral structure of the fluctuations.Comment: 6 pages, 3 figure

    Human neutrophil clearance of bacterial pathogens triggers anti-microbial gamma delta T cell responses in early infection

    Get PDF
    Human blood Vc9/Vd2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vc9/Vd2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vc9/Vd2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-c and tumor necrosis factor (TNF)-a. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vc9/Vd2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-a dependent proliferation of Vc9/Vd2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting cd T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vc9/Vd2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The cd T celldriven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of cd T cells and TNF-a and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive cd T cells in early infection and suggest novel diagnostic and therapeutic approaches.Martin S. Davey, Chan-Yu Lin, Gareth W. Roberts, Sinéad Heuston, Amanda C. Brown, James A. Chess, Mark A. Toleman, Cormac G.M. Gahan, Colin Hill, Tanya Parish, John D. Williams, Simon J. Davies, David W. Johnson, Nicholas Topley, Bernhard Moser and Matthias Eber

    Predicting live birth, preterm and low birth weight infant after in-vitro fertilisation: a prospective study of 144018 treatment cycles

    Get PDF
    Background The extent to which baseline couple characteristics affect the probability of live birth and adverse perinatal outcomes after assisted conception is unknown. Methods and Findings We utilised the Human Fertilisation and Embryology Authority database to examine the predictors of live birth in all in vitro fertilisation (IVF) cycles undertaken in the UK between 2003 and 2007 (n = 144,018). We examined the potential clinical utility of a validated model that pre-dated the introduction of intracytoplasmic sperm injection (ICSI) as compared to a novel model. For those treatment cycles that resulted in a live singleton birth (n = 24,226), we determined the associates of potential risk factors with preterm birth, low birth weight, and macrosomia. The overall rate of at least one live birth was 23.4 per 100 cycles (95% confidence interval [CI] 23.2–23.7). In multivariable models the odds of at least one live birth decreased with increasing maternal age, increasing duration of infertility, a greater number of previously unsuccessful IVF treatments, use of own oocytes, necessity for a second or third treatment cycle, or if it was not unexplained infertility. The association of own versus donor oocyte with reduced odds of live birth strengthened with increasing age of the mother. A previous IVF live birth increased the odds of future success (OR 1.58, 95% CI 1.46–1.71) more than that of a previous spontaneous live birth (OR 1.19, 95% CI 0.99–1.24); p-value for difference in estimate &#60;0.001. Use of ICSI increased the odds of live birth, and male causes of infertility were associated with reduced odds of live birth only in couples who had not received ICSI. Prediction of live birth was feasible with moderate discrimination and excellent calibration; calibration was markedly improved in the novel compared to the established model. Preterm birth and low birth weight were increased if oocyte donation was required and ICSI was not used. Risk of macrosomia increased with advancing maternal age and a history of previous live births. Infertility due to cervical problems was associated with increased odds of all three outcomes—preterm birth, low birth weight, and macrosomia. Conclusions Pending external validation, our results show that couple- and treatment-specific factors can be used to provide infertile couples with an accurate assessment of whether they have low or high risk of a successful outcome following IVF

    Neurocognitive function in HIV infected patients on antiretroviral therapy

    Get PDF
    OBJECTIVE To describe factors associated with neurocognitive (NC) function in HIV-positive patients on stable combination antiretroviral therapy. DESIGN We undertook a cross-sectional analysis assessing NC data obtained at baseline in patients entering the Protease-Inhibitor-Monotherapy-Versus-Ongoing-Triple therapy (PIVOT) trial. MAIN OUTCOME MEASURE NC testing comprised of 5 domains. Raw results were z-transformed using standard and demographically adjusted normative datasets (ND). Global z-scores (NPZ-5) were derived from averaging the 5 domains and percentage of subjects with test scores >1 standard deviation (SD) below population means in at least two domains (abnormal Frascati score) calculated. Patient characteristics associated with NC results were assessed using multivariable linear regression. RESULTS Of the 587 patients in PIVOT, 557 had full NC results and were included. 77% were male, 68% Caucasian and 28% of Black ethnicity. Mean (SD) baseline and nadir CD4+ lymphocyte counts were 553(217) and 177(117) cells/µL, respectively, and HIV RNA was <50 copies/mL in all. Median (IQR) NPZ-5 score was -0.5 (-1.2/-0) overall, and -0.3 (-0.7/0.1) and -1.4 (-2/-0.8) in subjects of Caucasian and Black ethnicity, respectively. Abnormal Frascati scores using the standard-ND were observed in 51%, 38%, and 81%, respectively, of subjects overall, Caucasian and Black ethnicity (p<0.001), but in 62% and 69% of Caucasian and Black subjects using demographically adjusted-ND (p = 0.20). In the multivariate analysis, only Black ethnicity was associated with poorer NPZ-5 scores (P<0.001). CONCLUSIONS In this large group of HIV-infected subjects with viral load suppression, ethnicity but not HIV-disease factors is closely associated with NC results. The prevalence of abnormal results is highly dependent on control datasets utilised. TRIAL REGISTRY ClinicalTrials.gov, NCT01230580

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated
    corecore