1,466 research outputs found
Theories of behaviour change synthesised into a set of theoretical groupings: Introducing a thematic series on the Theoretical Domains Framework
Behaviour change is key to increasing the uptake of evidence into healthcare practice. Designing behaviour-change interventions first requires problem analysis, ideally informed by theory. Yet the large number of partly overlapping theories of behaviour makes it difficult to select the most appropriate theory. The need for an overarching theoretical framework of behaviour change was addressed in research in which 128 explanatory constructs from 33 theories of behaviour were identified and grouped. The resulting Theoretical Domains Framework (TDF) appears to be a helpful basis for investigating implementation problems. Research groups in several countries have conducted TDF-based studies. It seems timely to bring together the experience of these teams in a thematic series to demonstrate further applications and to report key developments. This overview article describes the TDF, provides a brief critique of the framework, and introduces this thematic series.
In a brief review to assess the extent of TDF-based research, we identified 133 papers that cite the framework. Of these, 17 used the TDF as the basis for empirical studies to explore health professionals’ behaviour. The identified papers provide evidence of the impact of the TDF on implementation research. Two major strengths of the framework are its theoretical coverage and its capacity to elicit beliefs that could signify key mediators of behaviour change. The TDF provides a useful conceptual basis for assessing implementation problems, designing interventions to enhance healthcare practice, and understanding behaviour-change processes. We discuss limitations and research challenges and introduce papers in this series
Absence of system xc⁻ on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis
Background: Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System x(c)- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration.
Methods: Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system x(c)-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT(-/-)) mice and irradiated mice reconstituted in xCT(-/-) bone marrow (BM), to their proper wild type (xCT(+/+)) controls.
Results: xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT(+/+) mice, xCT(-/-) mice were equally susceptible to EAE, whereas mice transplanted with xCT(-/-) BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected.
Conclusions: Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system x(c)- on immune cells invading the CNS participates to EAE. Since a total loss of system x(c)- had no net beneficial effects, these results have important implications for targeting system x(c)- for treatment of MS
Determining the neurotransmitter concentration profile at active synapses
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Effect of eplerenone on parathyroid hormone levels in patients with primary hyperparathyroidism: a randomized, double-blind, placebo-controlled trial
<p>Abstract</p> <p>Background</p> <p>Increasing evidence suggests the bidirectional interplay between parathyroid hormone and aldosterone as an important mechanism behind the increased risk of cardiovascular damage and bone disease observed in primary hyperparathyroidism. Our primary object is to assess the efficacy of the mineralocorticoid receptor-blocker eplerenone to reduce parathyroid hormone secretion in patients with parathyroid hormone excess.</p> <p>Methods/design</p> <p>Overall, 110 adult male and female patients with primary hyperparathyroidism will be randomly assigned to eplerenone (25 mg once daily for 4 weeks and 4 weeks with 50 mg once daily after dose titration] or placebo, over eight weeks. Each participant will undergo detailed clinical assessment, including anthropometric evaluation, 24-h ambulatory arterial blood pressure monitoring, echocardiography, kidney function and detailed laboratory determination of biomarkers of bone metabolism and cardiovascular disease.</p> <p>The study comprises the following exploratory endpoints: mean change from baseline to week eight in (1) parathyroid hormone(1–84) as the primary endpoint and (2) 24-h systolic and diastolic ambulatory blood pressure levels, NT-pro-BNP, biomarkers of bone metabolism, 24-h urinary protein/albumin excretion and echocardiographic parameters reflecting systolic and diastolic function as well as cardiac dimensions, as secondary endpoints.</p> <p>Discussion</p> <p>In view of the reciprocal interaction between aldosterone and parathyroid hormone and the potentially ensuing target organ damage, the EPATH trial is designed to determine whether eplerenone, compared to placebo, will effectively impact on parathyroid hormone secretion and improve cardiovascular, renal and bone health in patients with primary hyperparathyroidism.</p> <p>Trial registration</p> <p>ISRCTN33941607</p
A parsimonious oscillatory model of handwriting
International audienceWe propose an oscillatory model that is theoretically parsimonious, empirically efficient and biologically plausible. Building on Hollerbach’s (Biol Cybern 39:139–156, 1981) model, our Parsimonious Oscillatory Model of Handwriting (POMH) overcomes the latter’s main shortcomings by making it possible to extract its parameters from the trace itself and by reinstating symmetry between the x and y coordinates. The benefit is a capacity to autonomously generate a smooth continuous trace that reproduces the dynamics of the handwriting movements through an extremely sparse model, whose efficiency matches that of other, more computationally expensive optimizing methods. Moreover, the model applies to 2D trajectories, irrespective of their shape, size, orientation and length. It is also independent of the endeffectors mobilized and of the writing direction
Rate-dependent Ca2+ signalling underlying the force-frequency response in rat ventricular myocytes: A coupled electromechanical modeling study
Rate-dependent effects on the Ca2+ sub-system in a rat ventricular myocyte are investigated. Here,
we employ a deterministic mathematical model describing various Ca2+ signalling pathways under
voltage clamp (VC) conditions, to better understand the important role of calmodulin (CaM) in modulating
the key control variables Ca2+/calmodulin-dependent protein kinase-II (CaMKII), calcineurin
(CaN), and cyclic adenosine monophosphate (cAMP) as they affect various intracellular targets. In
particular, we study the frequency dependence of the peak force generated by the myofilaments, the
force-frequency response (FFR). Our cell model incorporates frequency-dependent CaM-mediated spatially heterogenous interaction
of CaMKII and CaN with their principal targets (dihydropyridine (DHPR) and ryanodine (RyR) receptors
and the SERCA pump). It also accounts for the rate-dependent effects of phospholamban
(PLB) on the SERCA pump; the rate-dependent role of cAMP in up-regulation of the L-type Ca2+
channel (ICa;L); and the enhancement in SERCA pump activity via phosphorylation of PLB.Our model reproduces positive peak FFR observed in rat ventricular myocytes during voltage-clamp
studies both in the presence/absence of cAMP mediated -adrenergic stimulation. This study provides
quantitative insight into the rate-dependence of Ca2+-induced Ca2+-release (CICR) by investigating
the frequency-dependence of the trigger current (ICa;L) and RyR-release. It also highlights the relative
role of the sodium-calcium exchanger (NCX) and the SERCA pump at higher frequencies, as well
as the rate-dependence of sarcoplasmic reticulum (SR) Ca2+ content. A rigorous Ca2+ balance
imposed on our investigation of these Ca2+ signalling pathways clarifies their individual roles. Here,
we present a coupled electromechanical study emphasizing the rate-dependence of isometric force
developed and also investigate the temperature-dependence of FFR. Our model provides mechanistic biophysically based explanations for the rate-dependence of CICR,
generating useful and testable hypotheses. Although rat ventricular myocytes exhibit a positive peak
FFR in the presence/absence of beta-adrenergic stimulation, they show a characteristic increase in the
positive slope in FFR due to the presence of Norepinephrine or Isoproterenol. Our study identifies
cAMP-mediated stimulation, and rate-dependent CaMKII-mediated up-regulation of ICa;L as the key
mechanisms underlying the aforementioned positive FFR
Is there a common water-activity limit for the three domains of life?
Archaea and Bacteria constitute a majority of life systems on Earth but have long been considered inferior to Eukarya in terms of solute tolerance. Whereas the most halophilic prokaryotes are known for an ability to multiply at saturated NaCl (water activity (a w) 0.755) some xerophilic fungi can germinate, usually at high-sugar concentrations, at values as low as 0.650-0.605 a w. Here, we present evidence that halophilic prokayotes can grow down to water activities of <0.755 for Halanaerobium lacusrosei (0.748), Halobacterium strain 004.1 (0.728), Halobacterium sp. NRC-1 and Halococcus morrhuae (0.717), Haloquadratum walsbyi (0.709), Halococcus salifodinae (0.693), Halobacterium noricense (0.687), Natrinema pallidum (0.681) and haloarchaeal strains GN-2 and GN-5 (0.635 a w). Furthermore, extrapolation of growth curves (prone to giving conservative estimates) indicated theoretical minima down to 0.611 a w for extreme, obligately halophilic Archaea and Bacteria. These were compared with minima for the most solute-tolerant Bacteria in high-sugar (or other non-saline) media (Mycobacterium spp., Tetragenococcus halophilus, Saccharibacter floricola, Staphylococcus aureus and so on) and eukaryotic microbes in saline (Wallemia spp., Basipetospora halophila, Dunaliella spp. and so on) and high-sugar substrates (for example, Xeromyces bisporus, Zygosaccharomyces rouxii, Aspergillus and Eurotium spp.). We also manipulated the balance of chaotropic and kosmotropic stressors for the extreme, xerophilic fungi Aspergillus penicilloides and X. bisporus and, via this approach, their established water-activity limits for mycelial growth (∼0.65) were reduced to 0.640. Furthermore, extrapolations indicated theoretical limits of 0.632 and 0.636 a w for A. penicilloides and X. bisporus, respectively. Collectively, these findings suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life
Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis.
Venous abnormalities contribute to the pathophysiology of several neurological conditions. This paper reviews the literature regarding venous abnormalities in multiple sclerosis (MS), leukoaraiosis, and normal-pressure hydrocephalus (NPH). The review is supplemented with hydrodynamic analysis to assess the effects on cerebrospinal fluid (CSF) dynamics and cerebral blood flow (CBF) of venous hypertension in general, and chronic cerebrospinal venous insufficiency (CCSVI) in particular.CCSVI-like venous anomalies seem unlikely to account for reduced CBF in patients with MS, thus other mechanisms must be at work, which increase the hydraulic resistance of the cerebral vascular bed in MS. Similarly, hydrodynamic changes appear to be responsible for reduced CBF in leukoaraiosis. The hydrodynamic properties of the periventricular veins make these vessels particularly vulnerable to ischemia and plaque formation.Venous hypertension in the dural sinuses can alter intracranial compliance. Consequently, venous hypertension may change the CSF dynamics, affecting the intracranial windkessel mechanism. MS and NPH appear to share some similar characteristics, with both conditions exhibiting increased CSF pulsatility in the aqueduct of Sylvius.CCSVI appears to be a real phenomenon associated with MS, which causes venous hypertension in the dural sinuses. However, the role of CCSVI in the pathophysiology of MS remains unclear
- …
