3,956 research outputs found
Thermoelectric properties of Al-doped mesoporous ZnO thin films
Al-doped mesoporous ZnO thin films were synthesized by a sol-gel process and an evaporation-induced self-assembly process. In this work, the effects of Al doping concentration on the electrical conductivity and characterization of mesoporous ZnO thin films were investigated. By changing the Al doping concentration, ZnO grain growth is inhibited, and the mesoporous structure of ZnO is maintained during a relatively high temperature annealing process. The porosity of Al-doped mesoporous ZnO thin films increased slightly with increasing Al doping concentration. Finally, as electrical conductivity was increased as electrons were freed and pore structure was maintained by inhibiting grain growth, the thermoelectric property was enhanced with increasing Al concentration. © 2013 Min-Hee Hong et al
Effect of surfactant concentration variation on the thermoelectric properties of mesoporous ZnO
The electrical and thermal conductivities and the Seebeck coefficient of mesoporous ZnO thin films were investigated to determine the change of their thermoelectric properties by controlling surfactant concentration in the mesoporous ZnO films, because the thermoelectric properties of mesoporous ZnO films can be influenced by the porosity of the mesoporous structures, which is primarily determined by surfactant concentration in the films. Mesoporous ZnO thin films were successfully synthesized by using sol-gel and evaporation-induced self-assembly processes. Zinc acetate dihydrate and Brij-76 were used as the starting material and pore structure-forming template, respectively. The porosity of mesoporous ZnO thin films increased from 29% to 40% with increasing surfactant molar ratio. Porosity can be easily altered by controlling the molar ratio of surfactant/precursor. The electrical and thermal conductivity and Seebeck coefficients showed a close correlation with the porosity of the films, indicating that the thermoelectric properties of thin films can be changed by altering their porosity. Mesoporous ZnO thin films with the highest porosity had the best thermoelectric properties (the lowest thermal conductivity and the highest Seebeck coefficient) of the films examined. © 2013 Min-Hee Hong et al
Undocumented Burden of Dengue in Africa
In Africa, information on dengue burden in Africa is limited. Dengue diagnostics is also a key challenge in defining the true burden. Among the various diagnostic options, rapid diagnostic test (RDT) is a convenient and prompt tool for dengue diagnosis, especially in resource-limited environments. To assess current knowledge on the use of RDTs for dengue with respect to their economic impact, a systematic review was conducted of published data. Overall, data were limited to demonstrate an economic impact of dengue RDTs and the available two studies reached different conclusions: one concluded that one particular RDT would be a cost-effective tool in endemic setting, and the other, based on a modeling, showed that a dengue RDT would not be advantageous in terms of cost and effectiveness compared to current practice of antibiotics prescription for undifferentiated fever. This thesis presents patterns of dengue epidemiology and outbreak based on passive fever surveillance studies in Mombasa, Kenya, and Ouagadougou, Burkina Faso. To estimate the proportion and understand clinical patterns of dengue-positive cases among non-malarial febrile patients, we conducted passive health facility-based fever surveillance studies in Ouagadougou, Burkina Faso and Mombasa, Kenya. In Mombasa, of 482 non-malarial febrile patients, 223 (46%) were identified as dengue– confirmed and 92 (19%) as dengue-probable. The surveillance covered the beginning of a dengue outbreak in April-May 2017, during which 67% of enrolled patients were dengue-confirmed. In Ouagadougou, of 2929 non-malarial febrile patients, 540 (18%) were identified as dengue–confirmed and 571 (19%) as dengue-probable. During the study period, a dengue outbreak occurred in September-November 2016, during which 46% of enrolled patients were dengue-confirmed. To understand DENV transmission in the community, 4 repeated serosurveys were conducted among the same individuals at 6 month intervals in Ouagadougou. Seroprevalence at enrollment was 66%. The binomial regression based on IgG positivity by age, assuming constant force of infection (FoI) over calendar time, resulted in the FOI of 6% per year. In summary, in both Burkina Faso and Kenya, there is considerable transmission of DENV, in terms of proportion of DENV confirmed infections among iii non-malarial febrile patients in the healthcare facilities as well as seroprevalence and FoI in the community. These burden estimates can facilitate evidence-based decision making on interventions for dengue prevention and control, including a dengue vaccine. However, given the currently available information on dengue burden in Africa and the status of dengue vaccine development, including the only licensed vaccine with restrictions in public health use, consideration of dengue vaccine introduction may be premature for Africa and more data would be necessary to build evidence base on dengue in African settings
Simulating quantum statistics with entangled photons: a continuous transition from bosons to fermions
In contrast to classical physics, quantum mechanics divides particles into
two classes-bosons and fermions-whose exchange statistics dictate the dynamics
of systems at a fundamental level. In two dimensions quasi-particles known as
'anyons' exhibit fractional exchange statistics intermediate between these two
classes. The ability to simulate and observe behaviour associated to
fundamentally different quantum particles is important for simulating complex
quantum systems. Here we use the symmetry and quantum correlations of entangled
photons subjected to multiple copies of a quantum process to directly simulate
quantum interference of fermions, bosons and a continuum of fractional
behaviour exhibited by anyons. We observe an average similarity of 93.6\pm0.2%
between an ideal model and experimental observation. The approach generalises
to an arbitrary number of particles and is independent of the statistics of the
particles used, indicating application with other quantum systems and large
scale application.Comment: 10 pages, 5 figure
Brazilin Isolated from Caesalpinia sappan Suppresses Nuclear Envelope Reassembly by Inhibiting Barrier-to-Autointegration Factor Phosphorylation
To date, many anticancer drugs have been developed by directly or indirectly targeting microtubules, which are involved in cell division. Although this approach has yielded many anticancer drugs, these drugs produce undesirable side effects. An alternative strategy is needed, and targeting mitotic exit may be one alternative approach. Localization of phosphorylated barrier-to-autointegration factor (BAF) to the chromosomal core region is essential for nuclear envelope compartment relocalization. In this study, we isolated brazilin from Caesalpinia sappan Leguminosae and demonstrated that it inhibited BAF phosphorylation in vitro and in vivo. Moreover, we demonstrated direct binding between brazilin and BAF. The inhibition of BAF phosphorylation induced abnormal nuclear envelope reassembly and cell death, indicating that perturbation of nuclear envelope reassembly could be a novel approach to anticancer therapy. We propose that brazilin isolated from C. sappan may be a new anticancer drug candidate that induces cell death by inhibiting vaccinia-related kinase 1-mediated BAF phosphorylation.X1153Ysciescopu
Site-specific incorporation of phosphotyrosine using an expanded genetic code.
Access to phosphoproteins with stoichiometric and site-specific phosphorylation status is key to understanding the role of protein phosphorylation. Here we report an efficient method to generate pure, active phosphotyrosine-containing proteins by genetically encoding a stable phosphotyrosine analog that is convertible to native phosphotyrosine. We demonstrate its general compatibility with proteins of various sizes, phosphotyrosine sites and functions, and reveal a possible role of tyrosine phosphorylation in negative regulation of ubiquitination
Dye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells
The widespread commercialization of dye-sensitized solar cells remains limited because of the poor long-term stability. We report on the influence of dye-molecules added in liquid electrolyte on long-term stability of dye-sensitized solar cells. Dye-desorption from the TiO2 surface during long-term cycling is one of the decisive factors that degrade photocurrent densities of devices which in turn determine the efficiencies of the devices. For the first time, desorption of dye from the TiO2 surface could be suppressed by controlling thermodynamic equilibrium; by addition of dye molecules in the electrolyte. The dye molecules in the electrolyte can suppress the driving forces for the adsorbed dye molecules to be desorbed from TiO2 nanoparticles. As a result, highly enhanced device stabilities were achieved due to the reduction of dye-desorption although there was a little decrease in the initial efficiencies.open4
Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.
Aim: To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods: Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results: Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 µg/µl [SEM 0.12], - LLLT = 0.048 µg/µl [SEM 0.01]), IL-1β (placebo-control = 2.292 µg/µl [SEM 0.74], - LLLT = 0.12 µg/µl [SEM 0.03]), IL-6 (placebo-control = 3.946 µg/µl [SEM 0.98], - LLLT = 0.854 µg/µl [SEM 0.33]), IL-10 (placebo-control = 1.116 µg/µl [SEM 0.22], - LLLT = 0.352 µg/µl [SEM 0.15]), and COX-2 (placebo-control = 4.984 µg/µl [SEM 1.18], LLLT = 1.470 µg/µl [SEM 0.73]). Conclusion: Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy
Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells
Canine respiratory coronavirus (CRCoV), identified in 2003, is a member of the Coronaviridae family. The virus is a betacoronavirus and a close relative of human coronavirus OC43 and bovine coronavirus. Here, we examined entry of CRCoV into human rectal tumor cells (HRT-18G cell line) by analyzing co-localization of single virus particles with cellular markers in the presence or absence of chemical inhibitors of pathways potentially involved in virus entry. We also targeted these pathways using siRNA. The results show that the virus hijacks caveolin-dependent endocytosis to enter cells via endocytic internalization
Quantum Interference of Photon Pairs from Two Trapped Atomic Ions
We collect the fluorescence from two trapped atomic ions, and measure quantum
interference between photons emitted from the ions. The interference of two
photons is a crucial component of schemes to entangle atomic qubits based on a
photonic coupling. The ability to preserve the generated entanglement and to
repeat the experiment with the same ions is necessary to implement entangling
quantum gates between atomic qubits, and allows the implementation of protocols
to efficiently scale to larger numbers of atomic qubits.Comment: 4 pages, 4 figure
- …
