98 research outputs found

    Whistle communication in mammal-eating killer whales (Orcinus orca): further evidence for acoustic divergence between ecotypes

    Get PDF
    Public signaling plays an important role in territorial and sexual displays in animals; however, in certain situations, it is advantageous to keep signaling private to prevent eavesdropping by unintended receivers. In the northeastern Pacific, two populations of killer whales (Orcinus orca), fish-eating “resident” killer whales and mammal-eating “transient” killer whales, share the same habitat. Previous studies have shown that residents use whistles as private signals during close-range communication, where they probably serve to coordinate behavioral interactions. Here, we investigated the whistling behavior of mammal-eating killer whales, and, based on divergent social structures and social behaviors between residents and transients, we predicted to find differences in both whistle usage and whistle parameters. Our results show that, like resident killer whales, transients produce both variable and stereotyped whistles. However, clear differences in whistle parameters between ecotypes show that the whistle repertoire of mammal-eating killer whales is clearly distinct from and less complex than that of fish-eating killer whales. Furthermore, mammal-eating killer whales only produce whistles during “milling after kill” and “surface-active” behaviors, but are almost completely silent during all other activities. Nonetheless, whistles of transient killer whales may still serve a role similar to that of resident killer whales. Mammal-eating killer whales seem to be under strong selection to keep their communication private from potential prey (whose hearing ranges overlap with that of killer whales), and they appear to accomplish this mainly by restricting vocal activity rather than by changes in whistle parameters

    Spatial and temporal occurrence of killer whale ecotypes off the outer coast of Washington State, USA

    Full text link
    Three killer whale Orcinus orca ecotypes inhabit the northeastern Pacific: residents, transients, and offshores. To investigate intraspecific differences in spatial and temporal occur - rence off the outer coast of Washington State, USA, 2 long-term acoustic recorders were deployed from July 2004 to August 2013: one off the continental shelf in Quinault Canyon (QC) and the other on the shelf, off Cape Elizabeth (CE). Acoustic encounters containing pulsed calls were analyzed for call types attributable to specific ecotypes, as no calls are shared between ecotypes. Both sites showed killer whale presence year-round, although site CE had a higher number of days with encounters overall. Transients were the most common ecotype at both sites and were encountered mainly during the spring and early summer. Residents were encountered primarily at site CE and showed potential seasonal segregation between the 2 resident communities, with northern residents present mainly during summer and early fall when southern residents were not encountered. Offshore encounters were higher at site QC, with little evidence for seasonality. Spatial and temporal variability of residents and transients matches the distribution of their prey and can potentially be used for further inferences about prey preferences for different transient groups

    Vocalisations of Killer Whales (Orcinus orca) in the Bremer Canyon, Western Australia

    Get PDF
    To date, there has been no dedicated study in Australian waters on the acoustics of killer whales. Hence no information has been published on the sounds produced by killer whales from this region. Here we present the first acoustical analysis of recordings collected off the Western Australian coast. Underwater sounds produced by Australian killer whales were recorded during the months of February and March 2014 and 2015 in the Bremer Canyon in Western Australia. Vocalisations recorded included echolocation clicks, burst-pulse sounds and whistles. A total of 28 hours and 29 minutes were recorded and analysed, with 2376 killer whale calls (whistles and burst-pulse sounds) detected. Recordings of poor quality or signal-to-noise ratio were excluded from analysis, resulting in 142 whistles and burst-pulse vocalisations suitable for analysis and categorisation. These were grouped based on their spectrographic features into nine Bremer Canyon (BC) "call types". The frequency of the fundamental contours of all call types ranged from 600 Hz to 29 kHz. Calls ranged from 0.05 to 11.3 seconds in duration. Biosonar clicks were also recorded, but not studied further. Surface behaviours noted during acoustic recordings were categorised as either travelling or social behaviour. A detailed description of the acoustic characteristics is necessary for species acoustic identification and for the development of passive acoustic tools for population monitoring, including assessments of population status, habitat usage, migration patterns, behaviour and acoustic ecology. This study provides the first quantitative assessment and report on the acoustic features of killer whales vocalisations in Australian waters, and presents an opportunity to further investigate this little-known population

    Genome-culture coevolution promotes rapid divergence of killer whale ecotypes.

    Get PDF
    Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and post-zygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step towards an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level

    Distinguishing the Impacts of Inadequate Prey and Vessel Traffic on an Endangered Killer Whale (Orcinus orca) Population

    Get PDF
    Managing endangered species often involves evaluating the relative impacts of multiple anthropogenic and ecological pressures. This challenge is particularly formidable for cetaceans, which spend the majority of their time underwater. Noninvasive physiological approaches can be especially informative in this regard. We used a combination of fecal thyroid (T3) and glucocorticoid (GC) hormone measures to assess two threats influencing the endangered southern resident killer whales (SRKW; Orcinus orca) that frequent the inland waters of British Columbia, Canada and Washington, U.S.A. Glucocorticoids increase in response to nutritional and psychological stress, whereas thyroid hormone declines in response to nutritional stress but is unaffected by psychological stress. The inadequate prey hypothesis argues that the killer whales have become prey limited due to reductions of their dominant prey, Chinook salmon (Oncorhynchus tshawytscha). The vessel impact hypothesis argues that high numbers of vessels in close proximity to the whales cause disturbance via psychological stress and/or impaired foraging ability. The GC and T3 measures supported the inadequate prey hypothesis. In particular, GC concentrations were negatively correlated with short-term changes in prey availability. Whereas, T3 concentrations varied by date and year in a manner that corresponded with more long-term prey availability. Physiological correlations with prey overshadowed any impacts of vessels since GCs were lowest during the peak in vessel abundance, which also coincided with the peak in salmon availability. Our results suggest that identification and recovery of strategic salmon populations in the SRKW diet are important to effectively promote SRKW recovery

    Out of the Pacific and Back Again: Insights into the Matrilineal History of Pacific Killer Whale Ecotypes

    Get PDF
    Killer whales (Orcinus orca) are the most widely distributed marine mammals and have radiated to occupy a range of ecological niches. Disparate sympatric types are found in the North Atlantic, Antarctic and North Pacific oceans, however, little is known about the underlying mechanisms driving divergence. Previous phylogeographic analysis using complete mitogenomes yielded a bifurcating tree of clades corresponding to described ecotypes. However, there was low support at two nodes at which two Pacific and two Atlantic clades diverged. Here we apply further phylogenetic and coalescent analyses to partitioned mitochondrial genome sequences to better resolve the pattern of past radiations in this species. Our phylogenetic reconstructions indicate that in the North Pacific, sympatry between the maternal lineages that make up each ecotype arises from secondary contact. Both the phylogenetic reconstructions and a clinal decrease in diversity suggest a North Pacific to North Atlantic founding event, and the later return of killer whales to the North Pacific. Therefore, ecological divergence could have occurred during the allopatric phase through drift or selection and/or may have either commenced or have been consolidated upon secondary contact due to resource competition. The estimated timing of bidirectional migration between the North Pacific and North Atlantic coincided with the previous inter-glacial when the leakage of fauna from the Indo-Pacific into the Atlantic via the Agulhas current was particularly vigorous

    Harnessing learning biases is essential for applying social learning in conservation

    Get PDF
    Social learning can influence how animals respond to anthropogenic changes in the environment, determining whether animals survive novel threats and exploit novel resources or produce maladaptive behaviour and contribute to human-wildlife conflict. Predicting where social learning will occur and manipulating its use are, therefore, important in conservation, but doing so is not straightforward. Learning is an inherently biased process that has been shaped by natural selection to prioritize important information and facilitate its efficient uptake. In this regard, social learning is no different from other learning processes because it too is shaped by perceptual filters, attentional biases and learning constraints that can differ between habitats, species, individuals and contexts. The biases that constrain social learning are not understood well enough to accurately predict whether or not social learning will occur in many situations, which limits the effective use of social learning in conservation practice. Nevertheless, we argue that by tapping into the biases that guide the social transmission of information, the conservation applications of social learning could be improved. We explore the conservation areas where social learning is highly relevant and link them to biases in the cues and contexts that shape social information use. The resulting synthesis highlights many promising areas for collaboration between the fields and stresses the importance of systematic reviews of the evidence surrounding social learning practices.BBSRC David Phillips Fellowship (BB/H021817/1
    corecore