1,900 research outputs found

    Astronomical Spectroscopy

    Full text link
    Spectroscopy is one of the most important tools that an astronomer has for studying the universe. This chapter begins by discussing the basics, including the different types of optical spectrographs, with extension to the ultraviolet and the near-infrared. Emphasis is given to the fundamentals of how spectrographs are used, and the trade-offs involved in designing an observational experiment. It then covers observing and reduction techniques, noting that some of the standard practices of flat-fielding often actually degrade the quality of the data rather than improve it. Although the focus is on point sources, spatially resolved spectroscopy of extended sources is also briefly discussed. Discussion of differential extinction, the impact of crowding, multi-object techniques, optimal extractions, flat-fielding considerations, and determining radial velocities and velocity dispersions provide the spectroscopist with the fundamentals needed to obtain the best data. Finally the chapter combines the previous material by providing some examples of real-life observing experiences with several typical instruments.Comment: An abridged version of a chapter to appear in Planets, Stars and Stellar Systems, to be published in 2011 by Springer. Slightly revise

    Measurement-based quantum control of mechanical motion

    Full text link
    Controlling a quantum system based on the observation of its dynamics is inevitably complicated by the backaction of the measurement process. Efficient measurements, however, maximize the amount of information gained per disturbance incurred. Real-time feedback then enables both canceling the measurement's backaction and controlling the evolution of the quantum state. While such measurement-based quantum control has been demonstrated in the clean settings of cavity and circuit quantum electrodynamics, its application to motional degrees of freedom has remained elusive. Here we show measurement-based quantum control of the motion of a millimetre-sized membrane resonator. An optomechanical transducer resolves the zero-point motion of the soft-clamped resonator in a fraction of its millisecond coherence time, with an overall measurement efficiency close to unity. We use this position record to feedback-cool a resonator mode to its quantum ground state (residual thermal occupation n = 0.29 +- 0.03), 9 dB below the quantum backaction limit of sideband cooling, and six orders of magnitude below the equilibrium occupation of its thermal environment. This realizes a long-standing goal in the field, and adds position and momentum to the degrees of freedom amenable to measurement-based quantum control, with potential applications in quantum information processing and gravitational wave detectors.Comment: New version with corrected detection efficiency as determined with a NIST-calibrated photodiode, added references and revised structure. Main conclusions are identical. 41 pages, 18 figure

    Photonic quantum technologies

    Full text link
    The first quantum technology, which harnesses uniquely quantum mechanical effects for its core operation, has arrived in the form of commercially available quantum key distribution systems that achieve enhanced security by encoding information in photons such that information gained by an eavesdropper can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, promising exponentially greater computation power for particular tasks. Photonics is destined for a central role in such technologies owing to the need for high-speed transmission and the outstanding low-noise properties of photons. These technologies may use single photons or quantum states of bright laser beams, or both, and will undoubtably apply and drive state-of-the-art developments in photonics

    Charge asymmetries of top quarks at hadron colliders revisited

    Get PDF
    A sizeable difference in the differential production cross section of top- compared to antitop-quark production, denoted charge asymmetry, has been observed at the Tevatron. The experimental results seem to exceed the theory predictions based on the Standard Model by a significant amount and have triggered a large number of suggestions for "new physics". In the present paper the Standard Model predictions for Tevatron and LHC experiments are revisited. This includes a reanalysis of electromagnetic as well as weak corrections, leading to a shift of the asymmetry by roughly a factor 1.1 when compared to the results of the first papers on this subject. The impact of cuts on the transverse momentum of the top-antitop system is studied. Restricting the ttbar system to a transverse momentum less than 20 GeV leads to an enhancement of the asymmetries by factors between 1.3 and 1.5, indicating the importance of an improved understanding of the ttˉt\bar t-momentum distribution. Predictions for similar measurements at the LHC are presented, demonstrating the sensitivity of the large rapidity region both to the Standard Model contribution and effects from "new physics".Comment: 23 pages. Final version to appear in JHE

    Isolated and dynamical horizons and their applications

    Get PDF
    Over the past three decades, black holes have played an important role in quantum gravity, mathematical physics, numerical relativity and gravitational wave phenomenology. However, conceptual settings and mathematical models used to discuss them have varied considerably from one area to another. Over the last five years a new, quasi-local framework was introduced to analyze diverse facets of black holes in a unified manner. In this framework, evolving black holes are modeled by dynamical horizons and black holes in equilibrium by isolated horizons. We review basic properties of these horizons and summarize applications to mathematical physics, numerical relativity and quantum gravity. This paradigm has led to significant generalizations of several results in black hole physics. Specifically, it has introduced a more physical setting for black hole thermodynamics and for black hole entropy calculations in quantum gravity; suggested a phenomenological model for hairy black holes; provided novel techniques to extract physics from numerical simulations; and led to new laws governing the dynamics of black holes in exact general relativity.Comment: 77 pages, 12 figures. Typos and references correcte

    Trends in utilization and costs of BRCA testing among women aged 18–64 years in the United States, 2003–2014

    Get PDF
    Purpose We examined 12-year trends in BRCA testing rates and costs in the context of clinical guidelines, national policies, and other factors. Methods We estimated trends in BRCA testing rates and costs from 2003 to 2014 for women aged 18–64 years using private claims data and publicly reported revenues from the primary BRCA testing provider. Results The percentage of women with zero out-of-pocket payments for BRCA testing increased during 2013–2014, after 7 years of general decline, coinciding with a clarification of Affordable Care Act coverage of BRCA genetic testing. Beginning in 2007, family history accounted for an increasing proportion of women with BRCA tests compared with personal history, coinciding with BRCA testing guidelines for primary care settings and direct-to-consumer advertising campaigns. During 2013–2014, BRCA testing rates based on claims grew at a faster rate than revenues, following 3 years of similar growth, consistent with increased marketplace competition. In 2013, BRCA testing rates based on claims increased 57%, compared with 11% average annual increases over the preceding 3 years, coinciding with celebrity publicity. Conclusion The observed trends in BRCA testing rates and costs are consistent with possible effects of several factors, including the Affordable Care Act, clinical guidelines and celebrity publicity

    Student-Parent attitudes towards Filipino migrant teachers in Indonesia

    Get PDF
    Using ethnographic data gleaned from a foreign managed Christian school in Indonesia, this article situates the ethnic prejudices of Indonesian Chinese parents and students towards Filipino teachers within the organizational and cultural politics of private schooling. It is argued that the commoditization of education as a form of market consumption alongside the masculinized international curriculum help shape the feminization of teachers from the Philippines. Catering to the aspirations of the country’s minority ethnic Chinese, privately managed schools actively recruit trained teachers from the Philippines, many of whom are female and are perceived by students and their parents as exhibiting negative symbolic capital. In the process of their employment, they encounter occasional moments of less than complete success and challenges in their jobs. This article situates this prejudice within the cultural politics of masculinized Chinese schooling in Indonesia, while seeking to shed light on the role of Filipino work migrancy in Indonesia’s formal employment sector

    Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the Wjj

    Full text link
    We present U(1) flavor models for leptophobic Z' with flavor dependent couplings to the right-handed up-type quarks in the Standard Model, which can accommodate the recent data on the top forward-backward (FB) asymmetry and the dijet resonance associated with a W boson reported by CDF Collaboration. Such flavor-dependent leptophobic charge assignments generally require extra chiral fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor symmetry calls for new U(1)'-charged Higgs doublets in order for the SM fermions to have realistic renormalizable Yukawa couplings. The stringent constraints from the top FB asymmetry at the Tevatron and the same sign top pair production at the LHC can be evaded due to contributions of the extra Higgs doublets. We also show that the extension could realize cold dark matter candidates.Comment: 40 pages, 10 figures, added 1 figure and extended discussion, accepted for publication in JHE

    Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection.

    Get PDF
    Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses
    corecore