1,900 research outputs found
Astronomical Spectroscopy
Spectroscopy is one of the most important tools that an astronomer has for
studying the universe. This chapter begins by discussing the basics, including
the different types of optical spectrographs, with extension to the ultraviolet
and the near-infrared. Emphasis is given to the fundamentals of how
spectrographs are used, and the trade-offs involved in designing an
observational experiment. It then covers observing and reduction techniques,
noting that some of the standard practices of flat-fielding often actually
degrade the quality of the data rather than improve it. Although the focus is
on point sources, spatially resolved spectroscopy of extended sources is also
briefly discussed. Discussion of differential extinction, the impact of
crowding, multi-object techniques, optimal extractions, flat-fielding
considerations, and determining radial velocities and velocity dispersions
provide the spectroscopist with the fundamentals needed to obtain the best
data. Finally the chapter combines the previous material by providing some
examples of real-life observing experiences with several typical instruments.Comment: An abridged version of a chapter to appear in Planets, Stars and
Stellar Systems, to be published in 2011 by Springer. Slightly revise
Measurement-based quantum control of mechanical motion
Controlling a quantum system based on the observation of its dynamics is
inevitably complicated by the backaction of the measurement process. Efficient
measurements, however, maximize the amount of information gained per
disturbance incurred. Real-time feedback then enables both canceling the
measurement's backaction and controlling the evolution of the quantum state.
While such measurement-based quantum control has been demonstrated in the clean
settings of cavity and circuit quantum electrodynamics, its application to
motional degrees of freedom has remained elusive. Here we show
measurement-based quantum control of the motion of a millimetre-sized membrane
resonator. An optomechanical transducer resolves the zero-point motion of the
soft-clamped resonator in a fraction of its millisecond coherence time, with an
overall measurement efficiency close to unity. We use this position record to
feedback-cool a resonator mode to its quantum ground state (residual thermal
occupation n = 0.29 +- 0.03), 9 dB below the quantum backaction limit of
sideband cooling, and six orders of magnitude below the equilibrium occupation
of its thermal environment. This realizes a long-standing goal in the field,
and adds position and momentum to the degrees of freedom amenable to
measurement-based quantum control, with potential applications in quantum
information processing and gravitational wave detectors.Comment: New version with corrected detection efficiency as determined with a
NIST-calibrated photodiode, added references and revised structure. Main
conclusions are identical. 41 pages, 18 figure
Photonic quantum technologies
The first quantum technology, which harnesses uniquely quantum mechanical
effects for its core operation, has arrived in the form of commercially
available quantum key distribution systems that achieve enhanced security by
encoding information in photons such that information gained by an eavesdropper
can be detected. Anticipated future quantum technologies include large-scale
secure networks, enhanced measurement and lithography, and quantum information
processors, promising exponentially greater computation power for particular
tasks. Photonics is destined for a central role in such technologies owing to
the need for high-speed transmission and the outstanding low-noise properties
of photons. These technologies may use single photons or quantum states of
bright laser beams, or both, and will undoubtably apply and drive
state-of-the-art developments in photonics
Charge asymmetries of top quarks at hadron colliders revisited
A sizeable difference in the differential production cross section of top-
compared to antitop-quark production, denoted charge asymmetry, has been
observed at the Tevatron. The experimental results seem to exceed the theory
predictions based on the Standard Model by a significant amount and have
triggered a large number of suggestions for "new physics". In the present paper
the Standard Model predictions for Tevatron and LHC experiments are revisited.
This includes a reanalysis of electromagnetic as well as weak corrections,
leading to a shift of the asymmetry by roughly a factor 1.1 when compared to
the results of the first papers on this subject. The impact of cuts on the
transverse momentum of the top-antitop system is studied. Restricting the ttbar
system to a transverse momentum less than 20 GeV leads to an enhancement of the
asymmetries by factors between 1.3 and 1.5, indicating the importance of an
improved understanding of the -momentum distribution. Predictions for
similar measurements at the LHC are presented, demonstrating the sensitivity of
the large rapidity region both to the Standard Model contribution and effects
from "new physics".Comment: 23 pages. Final version to appear in JHE
Isolated and dynamical horizons and their applications
Over the past three decades, black holes have played an important role in
quantum gravity, mathematical physics, numerical relativity and gravitational
wave phenomenology. However, conceptual settings and mathematical models used
to discuss them have varied considerably from one area to another. Over the
last five years a new, quasi-local framework was introduced to analyze diverse
facets of black holes in a unified manner. In this framework, evolving black
holes are modeled by dynamical horizons and black holes in equilibrium by
isolated horizons. We review basic properties of these horizons and summarize
applications to mathematical physics, numerical relativity and quantum gravity.
This paradigm has led to significant generalizations of several results in
black hole physics. Specifically, it has introduced a more physical setting for
black hole thermodynamics and for black hole entropy calculations in quantum
gravity; suggested a phenomenological model for hairy black holes; provided
novel techniques to extract physics from numerical simulations; and led to new
laws governing the dynamics of black holes in exact general relativity.Comment: 77 pages, 12 figures. Typos and references correcte
Trends in utilization and costs of BRCA testing among women aged 18–64 years in the United States, 2003–2014
Purpose
We examined 12-year trends in BRCA testing rates and costs in the context of clinical guidelines, national policies, and other factors.
Methods
We estimated trends in BRCA testing rates and costs from 2003 to 2014 for women aged 18–64 years using private claims data and publicly reported revenues from the primary BRCA testing provider.
Results
The percentage of women with zero out-of-pocket payments for BRCA testing increased during 2013–2014, after 7 years of general decline, coinciding with a clarification of Affordable Care Act coverage of BRCA genetic testing. Beginning in 2007, family history accounted for an increasing proportion of women with BRCA tests compared with personal history, coinciding with BRCA testing guidelines for primary care settings and direct-to-consumer advertising campaigns. During 2013–2014, BRCA testing rates based on claims grew at a faster rate than revenues, following 3 years of similar growth, consistent with increased marketplace competition. In 2013, BRCA testing rates based on claims increased 57%, compared with 11% average annual increases over the preceding 3 years, coinciding with celebrity publicity.
Conclusion
The observed trends in BRCA testing rates and costs are consistent with possible effects of several factors, including the Affordable Care Act, clinical guidelines and celebrity publicity
Student-Parent attitudes towards Filipino migrant teachers in Indonesia
Using ethnographic data gleaned from a foreign managed Christian school in Indonesia, this article situates the ethnic prejudices of Indonesian Chinese parents and students towards Filipino teachers within the organizational and cultural politics of private schooling. It is argued that the commoditization of education as a form of market consumption alongside the masculinized international curriculum help shape the feminization of teachers from the Philippines. Catering to the aspirations of the country’s minority ethnic Chinese, privately managed schools actively recruit trained teachers from the Philippines, many of whom are female and are perceived by students and their parents as exhibiting negative symbolic capital. In the process of their employment, they encounter occasional moments of less than complete success and challenges in their jobs. This article situates this prejudice within the cultural politics of masculinized Chinese schooling in Indonesia, while seeking to shed light on the role of Filipino work migrancy in Indonesia’s formal employment sector
Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the Wjj
We present U(1) flavor models for leptophobic Z' with flavor dependent
couplings to the right-handed up-type quarks in the Standard Model, which can
accommodate the recent data on the top forward-backward (FB) asymmetry and the
dijet resonance associated with a W boson reported by CDF Collaboration. Such
flavor-dependent leptophobic charge assignments generally require extra chiral
fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor
symmetry calls for new U(1)'-charged Higgs doublets in order for the SM
fermions to have realistic renormalizable Yukawa couplings. The stringent
constraints from the top FB asymmetry at the Tevatron and the same sign top
pair production at the LHC can be evaded due to contributions of the extra
Higgs doublets. We also show that the extension could realize cold dark matter
candidates.Comment: 40 pages, 10 figures, added 1 figure and extended discussion,
accepted for publication in JHE
Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection.
Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses
Recommended from our members
Community composition of nitrous oxide reducing bacteria investigated using a functional gene microarray
The diversity and environmental distribution of the nosZ gene, which encodes the enzyme responsible for the consumption of nitrous oxide, was investigated in marine and terrestrial environments using a functional gene microarray. The microbial communities represented by the nosZ gene probes showed strong biogeographical separation. Communities from surface ocean waters and agricultural soils differed significantly from each other and from those in oceanic oxygen minimum zones. Atypical nosZ genes, usually associated with incomplete denitrification pathways, were detected in all the environments, including surface ocean waters. The abundance of nosZ genes, as estimated by quantitative PCR, was highest in agricultural soils and lowest in surface ocean waters
- …
