12,126 research outputs found
Recommended from our members
Assessing the Potential to Reduce U.S. Building CO2 Emissions 80% by 2050
Buildings are responsible for 36% of CO emissions in the United States and will thus be integral to climate change mitigation; yet, no studies have comprehensively assessed the potential long-term CO emissions reductions from the U.S. buildings sector against national goals in a way that can be regularly updated in the future. We use Scout, a reproducible and granular model of U.S. building energy use, to investigate the potential for the U.S. buildings sector to reduce CO emissions 80% by 2050, consistent with the U.S. Mid-Century Strategy. We find that a combination of aggressive efficiency measures, electrification, and high renewable energy penetration can reduce CO emissions by 72%–78% relative to 2005 levels, just short of the target. Results are sufficiently disaggregated by technology and end use to inform targeted building energy policy approaches and establish a foundation for continual reassessment of technology development pathways that drive significant long-term emissions reductions. 2 2 2
Manipulation of both virus- and cell-specific factors is required for robust transient replication of a hepatitis C virus genotype 3a sub-genomic replicon
Hepatitis C virus (HCV) genotype (GT) 3 is the second most prevalent of the seven HCV genotypes and exhibits the greatest resistance to the highly potent, direct-acting antivirals (DAAs) that are currently in use. Previously a stable cell line harbouring the S52 GT3 subgenomic replicon (SGR) was established, but this SGR was unable to robustly replicate transiently. As transient SGRs are a critical tool in the development of DAAs, and the study of viral resistance, we sought to establish a transient SGR system based on S52. Next generation sequencing was used to identify putative culture-adaptive substitutions that had arisen during long term selection of the S52 SGR. A subset of these substitutions were built back into the S52 SGR in the context of a CpG/UpA-low luciferase reporter, with a single point mutation in NS4A conferring the greatest replication capability upon S52. Modification of the innate immune-sensing pathways of Huh7.5 hepatoma cells by expression of the parainfluenza virus type 5 V protein and SEC14L2 resulted in a further enhancement of S52 replication. Furthermore, this transiently-replicating SGR showed genotype-specific differences in sensitivity to two clinically-relevant NS5A DAAs. In conclusion, we report that a single substitution in NS4A, coupled with host cell modifications, enabled robust levels of transient replication by the GT3 S52 SGR. This system will have beneficial uses in both basic research into the unique aspects of GT3 biology and drug discovery
Muscle fiber and motor unit behavior in the longest human skeletal muscle
The sartorius muscle is the longest muscle in the human body. It is strap-like, up to 600 mm in length, and contains five to seven neurovascular compartments, each with a neuromuscular endplate zone. Some of its fibers terminate intrafascicularly, whereas others may run the full length of the muscle. To assess the location and timing of activation within motor units of this long muscle, we recorded electromyographic potentials from multiple intramuscular electrodes along sartorius muscle during steady voluntary contraction and analyzed their activity with spike-triggered averaging from a needle electrode inserted near the proximal end of the muscle. Approximately 30% of sartorius motor units included muscle fibers that ran the full length of the muscle, conducting action potentials at 3.9 +/- 0.1 m/s. Most motor units were innervated within a single muscle endplate zone that was not necessarily near the midpoint of the fiber. As a consequence, action potentials reached the distal end of a unit as late as 100 ms after initiation at an endplate zone. Thus, contractile activity is not synchronized along the length of single sartorius fibers. We postulate that lateral transmission of force from fiber to endomysium and a wide distribution of motor unit endplates along the muscle are critical for the efficient transmission of force from sarcomere to tendon and for the prevention of muscle injury caused by overextension of inactive regions of muscle fibers
Spitzer Observations of Interstellar Object 1I/`Oumuamua
1I/`Oumuamua is the first confirmed interstellar body in our Solar System.
Here we report on observations of `Oumuamua made with the Spitzer Space
Telescope on 2017 November 21--22 (UT). We integrated for 30.2~hours at 4.5
micron (IRAC channel 2). We did not detect the object and place an upper limit
on the flux of 0.3 uJy (3sigma). This implies an effective spherical diameter
less than [98, 140, 440] meters and albedo greater than [0.2, 0.1, 0.01] under
the assumption of low, middle, or high thermal beaming parameter eta,
respectively. With an aspect ratio for `Oumuamua of 6:1, these results
correspond to dimensions of [240:40, 341:57, 1080:180] meters, respectively. We
place upper limits on the amount of dust, CO, and CO2 coming from this object
that are lower than previous results; we are unable to constrain the production
of other gas species. Both our size and outgassing limits are important because
`Oumuamua's trajectory shows non-gravitational accelerations that are sensitive
to size and mass and presumably caused by gas emission. We suggest that
`Oumuamua may have experienced low-level post-perihelion volatile emission that
produced a fresh, bright, icy mantle. This model is consistent with the
expected eta value and implied high albedo value for this solution, but, given
our strict limits on CO and CO2, requires another gas species --- probably H2O
--- to explain the observed non-gravitational acceleration. Our results extend
the mystery of `Oumuamua's origin and evolution
Charged pions from Ni on Ni collisions between 1 and 2 AGeV
Charged pions from Ni + Ni reactions at 1.05, 1.45 and 1.93 AGeV are measured
with the FOPI detector. The mean multiplicities per mean number of
participants increase with beam energy, in accordance with earlier studies of
the Ar + KCl and La + La systems. The pion kinetic energy spectra have concave
shape and are fitted by the superposition of two Boltzmann distributions with
different temperatures. These apparent temperatures depend only weakly on
bombarding energy. The pion angular distributions show a forward/backward
enhancement at all energies, but not the enhancement which was
observed in case of the Au + Au system. These features also determine the
rapidity distributions which are therefore in disagreement with the hypothesis
of one thermal source. The importance of the Coulomb interaction and of the
pion rescattering by spectator matter in producing these phenomena is
discussed.Comment: 22 pages, Latex using documentstyle[12pt,a4,epsfig], to appear in Z.
Phys.
Melaena with Peutz-Jeghers syndrome: a case report
Introduction: Peutz-Jeghers syndrome (PJS) is a rare familial disorder characterised by mucocutaneous pigmentation, gastrointestinal and extragastrointestinal hamartomatous polyps and an increased risk of malignancy. Peutz-Jeghers polyps in the bowel may result in intussusception. This complication usually manifests with abdominal pain and signs of intestinal obstruction.
Case Presentation: We report the case of a 24-year-old Caucasian male who presented with melaena. Pigmentation of the buccal mucosa was noted but he was pain-free and examination of the abdomen was unremarkable. Upper gastrointestinal endoscopy revealed multiple polyps. An urgent abdominal computed tomography (CT) scan revealed multiple small bowel intussusceptions. Laparotomy was undertaken on our patient, reducing the intussusceptions and removing the polyps by enterotomies. Bowel resection was not needed.
Conclusion: Melaena in PJS needs to be urgently investigated through a CT scan even in the absence of abdominal pain and when clinical examination of the abdomen shows normal findings. Although rare, the underlying cause could be intussusception, which if missed could result in grave consequences
Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture-insights from genomics.
This is the final version of the article. Available from the publisher via the DOI in this record.Trichoderma hamatum strain GD12 is unique in that it can promote plant growth, activate biocontrol against pre- and post-emergence soil pathogens and can induce systemic resistance to foliar pathogens. This study extends previous work in lettuce to demonstrate that GD12 can confer beneficial agronomic traits to other plants, providing examples of plant growth promotion in the model dicot, Arabidopsis thaliana and induced foliar resistance to Magnaporthe oryzae in the model monocot rice. We further characterize the lettuce-T. hamatum interaction to show that bran extracts from GD12 and an N-acetyl-β-D-glucosamindase-deficient mutant differentially promote growth in a concentration dependent manner, and these differences correlate with differences in the small molecule secretome. We show that GD12 mycoparasitises a range of isolates of the pre-emergence soil pathogen Sclerotinia sclerotiorum and that this interaction induces a further increase in plant growth promotion above that conferred by GD12. To understand the genetic potential encoded by T. hamatum GD12 and to facilitate its use as a model beneficial organism to study plant growth promotion, induced systemic resistance and mycoparasitism we present de novo genome sequence data. We compare GD12 with other published Trichoderma genomes and show that T. hamatum GD12 contains unique genomic regions with the potential to encode novel bioactive metabolites that may contribute to GD12's agrochemically important traits.This work was supported by a Biotechnology and Biological
Sciences Research Council grant BB/I014691/1 to Murray Grant
and Chris R. Thornto
Translational outcomes in a full gene deletion of ubiquitin protein ligase E3A rat model of Angelman syndrome.
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by developmental delay, impaired communication, motor deficits and ataxia, intellectual disabilities, microcephaly, and seizures. The genetic cause of AS is the loss of expression of UBE3A (ubiquitin protein ligase E6-AP) in the brain, typically due to a deletion of the maternal 15q11-q13 region. Previous studies have been performed using a mouse model with a deletion of a single exon of Ube3a. Since three splice variants of Ube3a exist, this has led to a lack of consistent reports and the theory that perhaps not all mouse studies were assessing the effects of an absence of all functional UBE3A. Herein, we report the generation and functional characterization of a novel model of Angelman syndrome by deleting the entire Ube3a gene in the rat. We validated that this resulted in the first comprehensive gene deletion rodent model. Ultrasonic vocalizations from newborn Ube3am-/p+ were reduced in the maternal inherited deletion group with no observable change in the Ube3am+/p- paternal transmission cohort. We also discovered Ube3am-/p+ exhibited delayed reflex development, motor deficits in rearing and fine motor skills, aberrant social communication, and impaired touchscreen learning and memory in young adults. These behavioral deficits were large in effect size and easily apparent in the larger rodent species. Low social communication was detected using a playback task that is unique to rats. Structural imaging illustrated decreased brain volume in Ube3am-/p+ and a variety of intriguing neuroanatomical phenotypes while Ube3am+/p- did not exhibit altered neuroanatomy. Our report identifies, for the first time, unique AS relevant functional phenotypes and anatomical markers as preclinical outcomes to test various strategies for gene and molecular therapies in AS
Removal of ecotoxicity of 17α-ethinylestradiol using TAML/peroxide water treatment
17α -ethinylestradiol (EE2), a synthetic oestrogen in oral contraceptives, is one of many pharmaceuticals found in inland waterways worldwide as a result of human consumption and excretion into wastewater treatment systems. At low parts per trillion (ppt), EE2 induces feminisation of male fish, diminishing reproductive success and causing fish population collapse. Intended water quality standards for EE2 set a much needed global precedent. Ozone and activated carbon provide effective wastewater treatments, but their energy intensities and capital/operating costs are formidable barriers to adoption. Here we describe the technical and environmental performance of a fast- developing contender for mitigation of EE2 contamination of wastewater based upon smallmolecule, full-functional peroxidase enzyme replicas called “TAML activators”. From neutral to basic pH, TAML activators with H2O2 efficiently degrade EE2 in pure lab water, municipal effluents and
EE2-spiked synthetic urine. TAML/H2O2 treatment curtails estrogenicity in vitro and substantially diminishes fish feminization in vivo. Our results provide a starting point for a future process in which tens of thousands of tonnes of wastewater could be treated per kilogram of catalyst. We suggest TAML/H2O2 is a worthy candidate for exploration as an environmentally compatible, versatile, method for removing EE2 and other pharmaceuticals from municipal wastewaters.Heinz Endowments, the Swiss National Science Foundation, the Steinbrenner Institute for a Steinbrenner
Doctoral Fellowship. NMR instrumentation at CMU was partially supported by NSF (CHE-0130903 and
CHE-1039870)
Conditioned stochastic particle systems and integrable quantum spin systems
We consider from a microscopic perspective large deviation properties of
several stochastic interacting particle systems, using their mapping to
integrable quantum spin systems. A brief review of recent work is given and
several new results are presented: (i) For the general disordered symmectric
exclusion process (SEP) on some finite lattice conditioned on no jumps into
some absorbing sublattice and with initial Bernoulli product measure with
density we prove that the probability of no absorption event
up to microscopic time can be expressed in terms of the generating function
for the particle number of a SEP with particle injection and empty initial
lattice. Specifically, for the symmetric simple exclusion process on conditioned on no jumps into the origin we obtain the explicit first and
second order expansion in of and also to first order in
the optimal microscopic density profile under this conditioning. For the
disordered ASEP on the finite torus conditioned on a very large current we show
that the effective dynamics that optimally realizes this rare event does not
depend on the disorder, except for the time scale. For annihilating and
coalescing random walkers we obtain the generating function of the number of
annihilated particles up to time , which turns out to exhibit some universal
features.Comment: 25 page
- …
