44 research outputs found

    Water induced sediment levitation enhances downslope transport on Mars

    Get PDF
    On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: “levitation” of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    The Fundamental Biological Activity of the Universe

    Get PDF
    If everything is in permanent change, can the Universe itself be fundamentally passive? Answering this question requires a clear concept of ‘activity.’ The nature of ‘action’ is a central and unsolved philosophical problem. Actions play a crucial role in the way we conceive of ourselves, life and the Universe, and the value we put on these. In four decades of research on solar activity, we found that activity is not a mere occurrence but a genuine activity of the Sun, initiated globally by the Sun using quantum processes as tools that generates suitable primary mass flows locally in the solar core that are capable of producing a working dynamo. We argue that solar activity is initiated by biological causes given by the fundamental principle of biology. This universal activity is the basis of our life instinct and of logic too

    Secret talk between adipose tissue and central nervous system via secreted factors—an emerging frontier in the neurodegenerative research

    Full text link

    Performance of the ATLAS Trigger System in 2010

    Get PDF
    Proton-proton collisions at sqrt{s} = 7 TeV and heavy ion collisions at sqrt{s_NN} = 2.76 TeV were produced by the LHC and recorded using the ATLAS experiment's trigger system in 2010. The LHC is designed with a maximum bunch crossing rate of 40 MHz and the ATLAS trigger system is designed to record approximately 200 of these per second. The trigger system selects events by rapidly identifying signatures of muon, electron, photon, tau lepton, jet, and B meson candidates, as well as using global event signatures, such as missing transverse energy. An overview of the ATLAS trigger system, the evolution of the system during 2010 and the performance of the trigger system components and selections based on the 2010 collision data are shown. A brief outline of plans for the trigger system in 2011 is presente

    Physical Properties of Icy Materials

    No full text
    There is evidence that water-ice exists on a number of bodies in the solar system. As ice deposits may contain biomarkers that indicate the presence of life, or can be used as a consumable resource for future missions, confirming these observations with in-situ measurements is of great interest. Missions aiming to do this must consider how the presence of water-ice in regolith affects both the regolith’s properties and the performance of the instruments that interact with it. The properties of icy lunar and Martian regolith simulants in preparation for currently planned missions are examined in this chapter. These results can be used in future instrumentation testing and missions designed to explore other icy bodies in the solar system. The testing of icy lunar regolith simulants is summarised, before focusing on experiments demonstrating the change in properties of frozen NU-LHT-2M, a simulant of the highlands regolith found at the lunar poles, as water is added. Further tests showed a critical point of 5 ± 1% water mass content where the penetration resistance significantly increases. The addition of water to Martian regolith simulants was also examined, with the presence of salts resulting in the formation of cemented crusts under simulated Martian conditions. Additional tests with the ExoMars PSDDS demonstrated how increased internal cohesion caused by the water resulted in the failure of the instrument
    corecore