84 research outputs found
Differential Carbohydrate Recognition by Campylobacter jejuni Strain 11168: Influences of Temperature and Growth Conditions
The pathogenic clinical strain NCTC11168 was the first Campylobacter jejuni strain to be sequenced and has been a widely used laboratory model for studying C. jejuni pathogenesis. However, continuous passaging of C. jejuni NCTC11168 has been shown to dramatically affect its colonisation potential. Glycan array analysis was performed on C. jejuni NCTC11168 using the frequently passaged, non-colonising, genome sequenced (11168-GS) and the infrequently passaged, original, virulent (11168-O) isolates grown or maintained under various conditions. Glycan structures recognised and bound by C. jejuni included terminal mannose, N-acetylneuraminic acid, galactose and fucose. Significantly, it was found that only when challenged with normal oxygen at room temperature did 11168-O consistently bind to sialic acid or terminal mannose structures, while 11168-GS bound these structures regardless of growth/maintenance conditions. Further, binding of un-capped galactose and fucosylated structures was significantly reduced when C. jejuni was maintained at 25°C under atmospheric oxygen conditions. These binding differences identified through glycan array analysis were confirmed by the ability of specific lectins to competitively inhibit the adherence of C. jejuni to a Caco-2 intestinal cell line. Our data suggests that the binding of mannose and/or N-acetylneuraminic acid may provide the initial interactions important for colonisation following environmental exposure
Regulation of Plant Developmental Processes by a Novel Splicing Factor
Serine/arginine-rich (SR) proteins play important roles in constitutive and alternative splicing and other aspects of mRNA metabolism. We have previously isolated a unique plant SR protein (SR45) with atypical domain organization. However, the biological and molecular functions of this novel SR protein are not known. Here, we report biological and molecular functions of this protein. Using an in vitro splicing complementation assay, we showed that SR45 functions as an essential splicing factor. Furthermore, the alternative splicing pattern of transcripts of several other SR genes was altered in a mutant, sr45-1, suggesting that the observed phenotypic abnormalities in sr45-1 are likely due to altered levels of SR protein isoforms, which in turn modulate splicing of other pre-mRNAs. sr45-1 exhibited developmental abnormalities, including delayed flowering, narrow leaves and altered number of petals and stamens. The late flowering phenotype was observed under both long days and short days and was rescued by vernalization. FLC, a key flowering repressor, is up-regulated in sr45-1 demonstrating that SR45 influences the autonomous flowering pathway. Changes in the alternative splicing of SR genes and the phenotypic defects in the mutant were rescued by SR45 cDNA, further confirming that the observed defects in the mutant are due to the lack of SR45. These results indicate that SR45 is a novel plant-specific splicing factor that plays a crucial role in regulating developmental processes
Recommended from our members
Electric-charge-dependent directed flow splitting of produced quarks in Au+Au collisions
We report directed flow (v1) of multistrange baryons (Ξ and Ω) and improved v1 data for K−, p¯, Λ¯ and ϕ in Au+Au collisions at sNN=27 and 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). We focus on particles whose constituent quarks are not transported from the incoming nuclei but instead are produced in the collisions. At intermediate impact parameters, we examine quark coalescence behavior for particle combinations with identical quark content, and search for any departure from this behavior (“splitting”) for combinations having non-identical quark content. Under the assumption of quark coalescence for produced quarks, the splitting strength appears to increase with the electric charge difference of the constituent quarks in the combinations, consistent with electromagnetic effect expectations
Recommended from our members
Measurements of charged-particle multiplicity dependence of higher-order net-proton cumulants in p + p collisions at s = 200 GeV from STAR at RHIC
We report on the charged-particle multiplicity dependence of net-proton cumulant ratios up to sixth order from s=200 GeV p+p collisions at the Relativistic Heavy Ion Collider (RHIC). The measured ratios C4/C2, C5/C1, and C6/C2 decrease with increased charged-particle multiplicity and rapidity acceptance. Neither the Skellam baselines nor PYTHIA8 calculations account for the observed multiplicity dependence. In addition, the ratios C5/C1 and C6/C2 approach negative values in the highest-multiplicity events, which implies that thermalized QCD matter may be formed in p+p collisions
Recommended from our members
Energy dependence of polarized γγ→e+e− in peripheral Au+Au collisions at sNN=54.4 and 200 GeV with the STAR experiment at RHIC
We report the differential yields at mid-rapidity of the Breit-Wheeler process (γγ→e+e-) in peripheral Au+Au collisions at sNN=54.4 and 200 GeV with the STAR experiment at the Relativistic Heavy Ion Collider (RHIC), as a function of energy sNN, e+e- transverse momentum pT, pT2, invariant mass Mee, and azimuthal angle. In the invariant mass range of 0.
Recommended from our members
Production of protons and light nuclei in Au+Au collisions at sNN=3 GeV with the STAR detector
We report the systematic measurement of protons and light nuclei production in Au+Au collisions at sNN=3GeV by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The transverse momentum (pT) spectra of protons (p), deuterons (d), tritons (t), He3, and He4 have been measured from midrapidity to target rapidity for different collision centralities. We present the rapidity and centrality dependence of particle yields (dN/dy), average transverse momentum ((pT)), yield ratios (d/p, t/p,He3/p, He4/p), as well as the coalescence parameters (B2, B3). The 4π yields for various particles are determined by utilizing the measured rapidity distributions, dN/dy. Furthermore, we present the energy, centrality, and rapidity dependence of the compound yield ratios (Np×Nt/Nd2) and compare them with various model calculations. The physics implications of these results on the production mechanism of light nuclei and the QCD phase structure are discussed
Recommended from our members
Reaction plane correlated triangular flow in Au+Au collisions at sNN=3 GeV
We measure triangular flow relative to the reaction plane at 3 GeV center-of-mass energy in Au+Au collisions at the BNL Relativistic Heavy Ion Collider. A significant v3 signal for protons is observed, which increases for higher rapidity, higher transverse momentum, and more peripheral collisions. The triangular flow is essentially rapidity-odd with a slope at midrapidity, dv3/dy|(y=0), opposite in sign compared to the slope for directed flow. No significant v3 signal is observed for charged pions and kaons. Comparisons with models suggest that a mean field potential is required to describe these results, and that the triangular shape of the participant nucleons is the result of stopping and nuclear geometry
Recommended from our members
Correlations of event activity with hard and soft processes in p+Au collisions at sNN=200 GeV at the RHIC STAR experiment
With the STAR experiment at the BNL Relativistic Heavy Ion Collider, we characterize sNN=200GeV p+Au collisions by event activity (EA) measured within the pseudorapidity range ηϵ[-5,-3.4] in the Au-going direction and report correlations between this EA and hard- and soft-scale particle production at midrapidity (ηϵ[-1,1]). At the soft scale, charged particle production in low-EA p+Au collisions is comparable to that in p+p collisions and increases monotonically with increasing EA. At the hard scale, we report measurements of high transverse momentum (pT) jets in events of different EAs. In contrast with the soft particle production, high-pT particle production and EA are found to be inversely related. To investigate whether this is a signal of jet quenching in high-EA events, we also report ratios of pT imbalance and azimuthal separation of dijets in high- and low-EA events. Within our measurement precision, no significant differences are observed, disfavoring the presence of jet quenching in the highest 30% EA p+Au collisions at sNN=200GeV
Comparative Analysis of Serine/Arginine-Rich Proteins across 27 Eukaryotes: Insights into Sub-Family Classification and Extent of Alternative Splicing
Alternative splicing (AS) of pre-mRNA is a fundamental molecular process that generates diversity in the transcriptome and proteome of eukaryotic organisms. SR proteins, a family of splicing regulators with one or two RNA recognition motifs (RRMs) at the N-terminus and an arg/ser-rich domain at the C-terminus, function in both constitutive and alternative splicing. We identified SR proteins in 27 eukaryotic species, which include plants, animals, fungi and “basal” eukaryotes that lie outside of these lineages. Using RNA recognition motifs (RRMs) as a phylogenetic marker, we classified 272 SR genes into robust sub-families. The SR gene family can be split into five major groupings, which can be further separated into 11 distinct sub-families. Most flowering plants have double or nearly double the number of SR genes found in vertebrates. The majority of plant SR genes are under purifying selection. Moreover, in all paralogous SR genes in Arabidopsis, rice, soybean and maize, one of the two paralogs is preferentially expressed throughout plant development. We also assessed the extent of AS in SR genes based on a splice graph approach (http://combi.cs.colostate.edu/as/gmap_SRgenes). AS of SR genes is a widespread phenomenon throughout multiple lineages, with alternative 3′ or 5′ splicing events being the most prominent type of event. However, plant-enriched sub-families have 57%–88% of their SR genes experiencing some type of AS compared to the 40%–54% seen in other sub-families. The SR gene family is pervasive throughout multiple eukaryotic lineages, conserved in sequence and domain organization, but differs in gene number across lineages with an abundance of SR genes in flowering plants. The higher number of alternatively spliced SR genes in plants emphasizes the importance of AS in generating splice variants in these organisms
Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and its Applications
- …
