3,675 research outputs found

    Directionality and bipolarity of olfactory ensheathing cells on electrospun nanofibers

    Get PDF
    AIM: As a preliminary to the construction of olfactory ensheathing cells (OECs) bearing scaffold for bridging larger lesions in the spinal cord, we have investigated the response of purified cultured OECs to nanoscale fibers of varying diameter using US FDA-approved, biodegradable poly(lactic-co-glycolic-acid). MATERIALS & METHODS: Conventional electrospinning produced fibers of approximately 700 nm diameter (nano-700) while nanocomposite electrospinning with quantum dots produced significantly more uniform fibers of a reduced diameter to approximately 237 nm (nano-250). OECs from adult rat were FACS purified, cultured at low density on either a flat surface or a meshwork of randomly orientated nano-700 and nano-250 fibers, and assessed using cytomorphometric analysis of immunofluorescent confocal images and by scanning electron microscopy. RESULTS & CONCLUSION: Compared with a flat surface, culture on a nano-700 mesh increases cell attachment. Cells change from rounded to stellate forms in random orientation. Further size reduction to the nano-250 favors bipolarity in cells with unidirectional orientation as observed in the case when transplanted OECs were used to bridge areas of damage in rat spinal cords

    Where do we go from here? An assessment of navigation performance using a compass versus a GPS unit

    Get PDF
    The Global Positioning System (GPS) looks set to replace the traditional map and compass for navigation tasks in military and civil domains. However, we may ask whether GPS has a real performance advantage over traditional methods. We present an exploratory study using a waypoint plotting task to compare the standard magnetic compass against a military GPS unit, for both expert and non-expert navigators. Whilst performance times were generally longer in setting up the GPS unit, once navigation was underway the GPS was more efficient than the compass. For mediumto long-term missions, this means that GPS could offer significant performance benefits, although the compass remains superior for shorter missions. Notwithstanding the performance times, significantly more errors, and more serious errors, occurred when using the compass. Overall, then, the GPS offers some clear advantages, especially for non-expert users. Nonetheless, concerns over the development of cognitive maps remain when using GPS technologies

    MHJ-0461 is a multifunctional leucine aminopeptidase on the surface of Mycoplasma hyopneumoniae

    Full text link
    © 2015 The Authors. Published. Aminopeptidases are part of the arsenal of virulence factors produced by bacterial pathogens that inactivate host immune peptides. Mycoplasma hyopneumoniae is a genome-reduced pathogen of swine that lacks the genetic repertoire to synthesize amino acids and relies on the host for availability of amino acids for growth. M. hyopneumoniae recruits plasmin(ogen) onto its cell surface via the P97 and P102 adhesins and the glutamyl aminopeptidase MHJ-0125. Plasmin plays an important role in regulating the inflammatory response in the lungs of pigs infected with M. hyopneumoniae. We show that recombinant MHJ-0461 (rMHJ-0461) functions as a leucine aminopeptidase (LAP) with broad substrate specificity for leucine, alanine, phenylalanine, methionine and arginine and that MHJ-0461 resides on the surface of M. hyopneumoniae. rMHJ-0461 also binds heparin, plasminogen and foreign DNA. Plasminogen bound to rMHJ-0461 was readily converted to plasmin in the presence of tPA. Computational modelling identified putative DNA and heparin-binding motifs on solvent-exposed sites around a large pore on the LAP hexamer. We conclude that MHJ-0461 is a LAP that moonlights as a multifunctional adhesin on the cell surface of M. hyopneumoniae

    Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae

    Get PDF
    © 2016 The Authors. Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial pathogen with a predicted coding capacity of less than 700 proteins and is one of the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae is extensively modified by processing events that target the P97 and P102 adhesin families. Here, we present analyses of the proteome of M. hyopneumoniae-type strain J using protein-centric approaches (one- and two-dimensional GeLC-MS/MS) that enabled us to focus on global processing events in this species. While these approaches only identified 52% of the predicted proteome (347 proteins), our analyses identified 35 surface-associated proteins with widely divergent functions that were targets of unusual endopro-teolytic processing events, including cell adhesins, lipoproteins and proteins with canonical functions in the cytosol that moonlight on the cell surface. Affinity chromatography assays that separately used heparin, fibronectin, actin and host epithelial cell surface proteins as bait recovered cleavage products derived from these processed proteins, suggesting these fragments interact directly with the bait proteins and display previously unrecognized adhesive functions. We hypothesize that protein processing is underestimated as a post-translational modification in genome-reduced bacteria and prokaryotes more broadly, and represents an important mechanism for creating cell surface protein diversity

    The case for inclusive area profiling applied in geographic information systems

    Get PDF
    This paper introduces the history and role of consultation processes of contemporary planning and, after presenting the popularity and criticisms of different practices including communities in urban decision making, it explores how rational planning tools like the geographic information system (GIS) could be exploited to reshape consultation and formally include subjective data in traditional area profiling. Focusing on the popular consultation tool of community mapping, primary and secondary research methods (a literature review, seven interviews to planners and two observational studies) identified seven different problems with contemporary community mapping: spatial and temporal scale, generalisation, integration, representativeness, accessibility, relatedness and visualisation. The conceptualisation, physical modelling and testing of a new community mapping procedure ‘Submap’ is then used to address these problems and discuss (a) the strengths and limitations of formalising community mapping activities for area profiling in GIS and (b) the role of pragmatic research in promoting inclusive practices in contemporary planning

    Contribution of the cyclic nucleotide gated channel subunit, CNG-3, to olfactory plasticity in Caenorhabditis elegans.

    Get PDF
    In Caenorhabditis elegans, the AWC neurons are thought to deploy a cGMP signaling cascade in the detection of and response to AWC sensed odors. Prolonged exposure to an AWC sensed odor in the absence of food leads to reversible decreases in the animal's attraction to that odor. This adaptation exhibits two stages referred to as short-term and long-term adaptation. Previously, the protein kinase G (PKG), EGL-4/PKG-1, was shown necessary for both stages of adaptation and phosphorylation of its target, the beta-type cyclic nucleotide gated (CNG) channel subunit, TAX-2, was implicated in the short term stage. Here we uncover a novel role for the CNG channel subunit, CNG-3, in short term adaptation. We demonstrate that CNG-3 is required in the AWC for adaptation to short (thirty minute) exposures of odor, and contains a candidate PKG phosphorylation site required to tune odor sensitivity. We also provide in vivo data suggesting that CNG-3 forms a complex with both TAX-2 and TAX-4 CNG channel subunits in AWC. Finally, we examine the physiology of different CNG channel subunit combinations

    Initial conditions, Discreteness and non-linear structure formation in cosmology

    Get PDF
    In this lecture we address three different but related aspects of the initial continuous fluctuation field in standard cosmological models. Firstly we discuss the properties of the so-called Harrison-Zeldovich like spectra. This power spectrum is a fundamental feature of all current standard cosmological models. In a simple classification of all stationary stochastic processes into three categories, we highlight with the name ``super-homogeneous'' the properties of the class to which models like this, with P(0)=0P(0)=0, belong. In statistical physics language they are well described as glass-like. Secondly, the initial continuous density field with such small amplitude correlated Gaussian fluctuations must be discretised in order to set up the initial particle distribution used in gravitational N-body simulations. We discuss the main issues related to the effects of discretisation, particularly concerning the effect of particle induced fluctuations on the statistical properties of the initial conditions and on the dynamical evolution of gravitational clustering.Comment: 28 pages, 1 figure, to appear in Proceedings of 9th Course on Astrofundamental Physics, International School D. Chalonge, Kluwer, eds N.G. Sanchez and Y.M. Pariiski, uses crckapb.st pages, 3 figure, ro appear in Proceedings of 9th Course on Astrofundamental Physics, International School D. Chalonge, Kluwer, Eds. N.G. Sanchez and Y.M. Pariiski, uses crckapb.st

    Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters?

    Get PDF
    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0–100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this would lead to: (i) improvement of the ecological integrity, (ii) reduction of biodiversity loss, and (iii) faster achievement of objectives of legislative requirements, e.g., the European Water Framework Directive

    WIMP-nucleus scattering in chiral effective theory

    Full text link
    We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions in the framework of chiral effective theory. For scalar-mediated WIMP-quark interactions, we calculate all the next-to-leading-order corrections to the WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and recoil-energy dependent shifts to the single-nucleon scalar form factors. As a consequence, the scalar-mediated WIMP-nucleus cross-section cannot be parameterized in terms of just two quantities, namely the neutron and proton scalar form factors at zero momentum transfer, but additional parameters appear, depending on the short-distance WIMP-quark interaction. Moreover, multiplicative factorization of the cross-section into particle, nuclear and astro-particle parts is violated. In practice, while the new effects are of the natural size expected by chiral power counting, they become very important in those regions of parameter space where the leading order WIMP-nucleus amplitude is suppressed, including the so-called "isospin-violating dark matter" regime. In these regions of parameter space we find order-of-magnitude corrections to the total scattering rates and qualitative changes to the shape of recoil spectra.Comment: 23 pages, 6 figures, 1 tabl
    corecore