17,806 research outputs found
Secondhand smoke (SHS) exposures: Workplace exposures, related perceptions of SHS risk, and reactions to smoking in catering workers in smoking and nonsmoking premises
Introduction: Smoke-free workplace legislation often exempts certain venues. Do smoking (exempted) and nonsmoking (nonexempted) catering premises' workers in Hong Kong report different perceptions of risk from and reactions to nearby smoking as well as actual exposure to secondhand smoke (SHS)? Methods: In a cross-sectional survey of 204 nonsmoking catering workers, those from 67 premises where smoking is allowed were compared with workers from 36 nonsmoking premises in Hong Kong on measures of perceptions of risk and behavioral responses to self-reported SHS exposure, plus independent exposure assessment using urinary cotinine. Results: Self-reported workplace SHS exposure prevalence was 57% (95% CI = 49%-65%) in premises prohibiting and 100% (95% CI = 92%-100%) in premises permitting smoking (p < .001). Workers in smoking-permitted premises perceived workplace air quality as poorer (odds ratio [OR] = 9.3, 95% CI = 4.2-20.9) with higher associated risks (OR = 3.7, 95% CI = 1.6-8.6) than workers in smoking-prohibited premises. Workers in smoking-prohibited premises were more bothered by (OR = 0.2, 95% CI = 0.1-0.5) and took more protective action to avoid SHS (OR = 0.2, 95% CI = 0.1-0.4) than workers in smoking-permitted premises. Nonwork exposure was negatively associated with being always bothered by nearby smoking (OR = 0.3, 95% CI = 0.1-0.9), discouraging nearby smoking (OR = 0.5, 95% CI = 0.2-1.1), and discouraging home smoking (OR = 0.4, 95% CI = 0.2-0.9). Urinary cotinine levels were inversely related to workers' avoidance behavior but positively related to their perceived exposure-related risks. Conclusions: Different workplace smoking restrictions predicted actual SHS exposure, exposure-related risk perception, and protective behaviors. Workers from smoking-permitted premises perceived greater SHS exposure-related risks but were more tolerant of these than workers in smoking-prohibited premises. This tolerance might indirectly increase both work and nonwork exposures. © The Author 2011. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved.postprin
Adding control to arbitrary unknown quantum operations
While quantum computers promise significant advantages, the complexity of
quantum algorithms remains a major technological obstacle. We have developed
and demonstrated an architecture-independent technique that simplifies adding
control qubits to arbitrary quantum operations-a requirement in many quantum
algorithms, simulations and metrology. The technique is independent of how the
operation is done, does not require knowledge of what the operation is, and
largely separates the problems of how to implement a quantum operation in the
laboratory and how to add a control. We demonstrate an entanglement-based
version in a photonic system, realizing a range of different two-qubit gates
with high fidelity.Comment: 9 pages, 8 figure
Proteome analysis of multidrug-resistant, breast cancer-derived microparticles
© 2014 Deep Pokharel et al. Cancer multidrug resistance (MDR) occurswhen cancer cells evade the cytotoxic actions of chemotherapeutics through the active efflux of drugs from within the cells. Our group have previously demonstrated that multidrug-resistant breast cancer cells spontaneously shed microparticles (MPs) and that these MPs can transfer resistance to drug-responsive cells and confer MDR on those cells in as little as 4 h. Furthermore, we also showed that, unlike MPs derived from leukaemia cells, breast cancer-derived MPs display a tissue selectivity in the transfer of P-glycoprotein (P-gp), transferring the resistance protein only to malignant breast cells. This study aims to define the proteome of breast cancer-derived MPs in order to understand the differences in protein profiles between those shed from drug-resistant versus drug-sensitive breast cancer cells. In doing so, we detail the protein cargo required for the intercellular transfer of MDR to drug-sensitive recipient cells and the factors governing the transfer selectivity to malignant breast cells. We describe the first proteomic analysis of MPs derived from human breast cancer cells using SDS PAGE and liquid chromatography-tandem mass spectrometry (LC/MS/MS), in which we identify 120 unique proteins found only in drug-resistant, breast cancer-derived MPs. Our results demonstrate that the MP-mediated transfer of P-gp to recipient cells occurs alongside CD44; the Ezrin, Radixin and Moesin protein family (ERM); and cytoskeleton motor proteins within the MP cargo
Considering the Case for Biodiversity Cycles: Reexamining the Evidence for Periodicity in the Fossil Record
Medvedev and Melott (2007) have suggested that periodicity in fossil
biodiversity may be induced by cosmic rays which vary as the Solar System
oscillates normal to the galactic disk. We re-examine the evidence for a 62
million year (Myr) periodicity in biodiversity throughout the Phanerozoic
history of animal life reported by Rohde & Mueller (2005), as well as related
questions of periodicity in origination and extinction. We find that the signal
is robust against variations in methods of analysis, and is based on
fluctuations in the Paleozoic and a substantial part of the Mesozoic.
Examination of origination and extinction is somewhat ambiguous, with results
depending upon procedure. Origination and extinction intensity as defined by RM
may be affected by an artifact at 27 Myr in the duration of stratigraphic
intervals. Nevertheless, when a procedure free of this artifact is implemented,
the 27 Myr periodicity appears in origination, suggesting that the artifact may
ultimately be based on a signal in the data. A 62 Myr feature appears in
extinction, when this same procedure is used. We conclude that evidence for a
periodicity at 62 Myr is robust, and evidence for periodicity at approximately
27 Myr is also present, albeit more ambiguous.Comment: Minor modifications to reflect final published versio
Experimental realisation of Shor's quantum factoring algorithm using qubit recycling
Quantum computational algorithms exploit quantum mechanics to solve problems
exponentially faster than the best classical algorithms. Shor's quantum
algorithm for fast number factoring is a key example and the prime motivator in
the international effort to realise a quantum computer. However, due to the
substantial resource requirement, to date, there have been only four
small-scale demonstrations. Here we address this resource demand and
demonstrate a scalable version of Shor's algorithm in which the n qubit control
register is replaced by a single qubit that is recycled n times: the total
number of qubits is one third of that required in the standard protocol.
Encoding the work register in higher-dimensional states, we implement a
two-photon compiled algorithm to factor N=21. The algorithmic output is
distinguishable from noise, in contrast to previous demonstrations. These
results point to larger-scale implementations of Shor's algorithm by harnessing
scalable resource reductions applicable to all physical architectures.Comment: 7 pages, 3 figure
A Computation in a Cellular Automaton Collider Rule 110
A cellular automaton collider is a finite state machine build of rings of
one-dimensional cellular automata. We show how a computation can be performed
on the collider by exploiting interactions between gliders (particles,
localisations). The constructions proposed are based on universality of
elementary cellular automaton rule 110, cyclic tag systems, supercolliders, and
computing on rings.Comment: 39 pages, 32 figures, 3 table
Electron-Scale Quadrants of the Hall Magnetic Field Observed by the Magnetospheric Multiscale spacecraft during Asymmetric Reconnection
An in situ measurement at the magnetopause shows that the quadrupole pattern of the Hall magnetic field, which is commonly observed in a symmetric reconnection, is still evident in an asymmetric component reconnection, but the two quadrants adjacent to the magnetosphere are strongly compressed into the electron scale and the widths of the remaining two quadrants are still ion scale. The bipolar Hall electric field pattern generally created in a symmetric reconnection is replaced by a unipolar electric field within the electron-scale quadrants. Furthermore, it is concluded that the spacecraft directly passed through the inner electron diffusion region based on the violation of the electron frozen-in condition, the energy dissipation, and the slippage between the electron flow and the magnetic field. Within the inner electron diffusion region, magnetic energy was released and accumulated simultaneously, and it was accumulated in the perpendicular directions while dissipated in the parallel direction. The localized thinning of the current sheet accounts for the energy accumulation in a reconnection
Photonic quantum technologies
The first quantum technology, which harnesses uniquely quantum mechanical
effects for its core operation, has arrived in the form of commercially
available quantum key distribution systems that achieve enhanced security by
encoding information in photons such that information gained by an eavesdropper
can be detected. Anticipated future quantum technologies include large-scale
secure networks, enhanced measurement and lithography, and quantum information
processors, promising exponentially greater computation power for particular
tasks. Photonics is destined for a central role in such technologies owing to
the need for high-speed transmission and the outstanding low-noise properties
of photons. These technologies may use single photons or quantum states of
bright laser beams, or both, and will undoubtably apply and drive
state-of-the-art developments in photonics
- …
