10 research outputs found
Genetic Traces of Recent Long-Distance Dispersal in a Predominantly Self-Recruiting Coral
Understanding of the magnitude and direction of the exchange of individuals among geographically separated subpopulations that comprise a metapopulation (connectivity) can lead to an improved ability to forecast how fast coral reef organisms are likely to recover from disturbance events that cause extensive mortality. Reef corals that brood their larvae internally and release mature larvae are believed to show little exchange of larvae over ecological times scales and are therefore expected to recover extremely slowly from large-scale perturbations.Using analysis of ten DNA microsatellite loci, we show that although Great Barrier Reef (GBR) populations of the brooding coral, Seriatopora hystrix, are mostly self-seeded and some populations are highly isolated, a considerable amount of sexual larvae (up to approximately 4%) has been exchanged among several reefs 10 s to 100 s km apart over the past few generations. Our results further indicate that S. hystrix is capable of producing asexual propagules with similar long-distance dispersal abilities (approximately 1.4% of the sampled colonies had a multilocus genotype that also occurred at another sampling location), which may aid in recovery from environmental disturbances.Patterns of connectivity in this and probably other GBR corals are complex and need to be resolved in greater detail through genetic characterisation of different cohorts and linkage of genetic data with fine-scale hydrodynamic models
Circulation in the Great Barrier Reef Lagoon using numerical tracers and in situ data
Numerical hydrodynamic models of the northeastern Queensland shelf, forced by regional winds and modelled boundary currents in the northern Coral Sea, are used to provide improved estimates of general flow trajectories and water residence times within the Great Barrier Reef (GBR) shelf system. Model performance was checked against a limited set of current metre records obtained at Lark Reef (16°S) and the Ribbon Reefs (15.5°S). Estimates of water parcel trajectories are derived from a series of numerical tracer experiments, with daily releases of neutrally buoyant, un-reactive particles at 320 sites along the coast between Cape York (10.7°S) and Hervey Bay (25°S). Flow trajectories and residence times for tracer particles introduced to the GBR lagoon in the southern-ca. 22°S, central-19°S, and northern reef-14°S are emphasised. For purposes of the analysis, the year was divided into two seasons based on mean alongshore current direction. Most coastal sourced tracers entering the central GBR lagoon between 16° and 20°S during the northward-current season (January-August) primarily encounter the outer-shelf reef matrix after exiting the lagoon at its northern "head" (nominally 16°S), after 50-150 days. Up to 70% of tracer particles entering in the southward-current season (August-December) eventually crossed the lagoon to the outer-shelf reef matrix, with median crossing times between 20 and 330 days. During favourable wind conditions, tracers introduced at the coast may move rapidly across the lagoon into the reef matrix. The tracer experiments indicate that most coastal-sourced tracers entering the GBR lagoon remain near the coast for extended periods of time, moving north and south in a coastal band. Residence times for conservative tracer particles (and implied residence times for water-borne materials) within the GBR shelf system ranged from ca. 1 month to 1 year-time frames that are very long relative to development times of planktonic larvae and cycling times for nutrient materials in the water column, implying they are transformed long before reaching the outer reef matrix. © 2007 Elsevier Ltd. All rights reserved
Arteriovenous blood metabolomics: An efficient method to determine the key metabolic pathway for milk synthesis in the intra-mammary gland
Distribution of sea snakes in the Great Barrier Reef Marine Park: observations from 10 yrs of baited remote underwater video station (BRUVS) sampling
The distributions of three species of sea snake (olive sea snake: Aipysurus laevis, spine-bellied sea snake: Lapemis curtus, and ornate sea snake: Hydrophis ocellatus) were estimated over 14A degrees of latitude within the Great Barrier Reef Marine Park (GBRMP) using data from baited remote underwater video stations (BRUVS). A total of 2,471 deployments of BRUVS were made in a range of locations, in sites open and closed to trawl fishing. Sightings of sea snakes were analysed alongside six spatial factors [depth, relative distance across (longitude) and along (latitude) the GBRMP, proximity to land, proximity to the nearest reef, and habitat complexity] to determine the factors that most strongly influenced the distribution and abundance of sea snakes. The results showed a strong latitudinal effect on the distribution of all three sea snake species, with the highest densities and diversities occurring in central and southern GBRMP locations, while the northern Great Barrier Reef was relatively depauperate in terms of both occurrence and diversity. Shallow inshore areas were identified as key habitats for A. laevis and L. curtus, whereas deeper offshore habitats were most important for H. ocellatus. No significant difference was found in the mean number of snakes sighted per hour between sites open and closed to trawling. There was a high degree of congruence in the distribution of sea snakes estimated from the BRUVS data and results from previous trawl and underwater visual surveys, demonstrating the utility of BRUVS to estimate distribution and relative abundance in these species of sea snake at broad spatial scales in a non-extractive manner
Environmental records from Great Barrier Reef corals: inshore versus offshore drivers
The biogenic structures of stationary organisms can be effective recorders of environmental fluctuations. These proxy records of environmental change are preserved as geochemical signals in the carbonate skeletons of scleractinian corals and are useful for reconstructions of temporal and spatial fluctuations in the physical and chemical environments of coral reef ecosystems, including The Great Barrier Reef (GBR). We compared multi-year monitoring of water temperature and dissolved elements with analyses of chemical proxies recorded in Porites coral skeletons to identify the divergent mechanisms driving environmental variation at inshore versus offshore reefs. At inshore reefs, water Ba/Ca increased with the onset of monsoonal rains each year, indicating a dominant control of flooding on inshore ambient chemistry. Inshore multi-decadal records of coral Ba/Ca were also highly periodic in response to flood-driven pulses of terrigenous material. In contrast, an offshore reef at the edge of the continental shelf was subject to annual upwelling of waters that were presumed to be richer in Ba during summer months. Regular pulses of deep cold water were delivered to the reef as indicated by in situ temperature loggers and coral Ba/Ca. Our results indicate that although much of the GBR is subject to periodic environmental fluctuations, the mechanisms driving variation depend on proximity to the coast. Inshore reefs are primarily influenced by variable freshwater delivery and terrigenous erosion of catchments, while offshore reefs are dominated by seasonal and inter-annual variations in oceanographic conditions that influence the propensity for upwelling. The careful choice of sites can help distinguish between the various factors that promote Ba uptake in corals and therefore increase the utility of corals as monitors of spatial and temporal variation in environmental conditions
Effects of suspended sediments, dissolved inorganic nutrients and salinity on fertilisation and embryo development in the coral Acropora millepora (Ehrenberg, 1834)
Internal climate variability and projected future regional steric and dynamic sea level rise
Best practice in healthcare environment decontamination
There is now strong evidence that surface contamination is linked to healthcare-associated infections (HCAIs). Cleaning and disinfection should be sufficient to decrease the microbial bioburden from surfaces in healthcare settings, and, overall, help in decreasing infections. It is, however, not necessarily the case. Evidence suggests that there is a link between educational interventions and a reduction in infections. To improve the overall efficacy and appropriate usage of disinfectants, manufacturers need to engage with the end users in providing clear claim information and product usage instructions. This review provides a clear analysis of the scientific evidence supporting the role of surfaces in HCAIs and the role of education in decreasing such infections. It also examines the debate opposing the use of cleaning versus disinfection in healthcare settings
