12,011 research outputs found
Impact of motorboats on fish embryos depends on engine type
This is the final version of the article. Available from Oxford University Press via the DOI in this record.Human generated noise is changing the natural underwater soundscapes worldwide. The most pervasive sources of underwater anthropogenic noise are motorboats, which have been found to negatively affect several aspects of fish biology. However, few studies have examined the effects of noise on early life stages, especially the embryonic stage, despite embryo health being critical to larval survival and recruitment. Here, we used a novel setup to monitor heart rates of embryos from the staghorn damselfish (Amblyglyphidodon curacao) in shallow reef conditions, allowing us to examine the effects ofin situboat noise in context with real-world exposure. We found that the heart rate of embryos increased in the presence of boat noise, which can be associated with the stress response. Additionally, we found 2-stroke outboard-powered boats had more than twice the effect on embryo heart rates than did 4-stroke powered boats, showing an increase in mean individual heart rate of 1.9% and 4.6%, respectively. To our knowledge this is the first evidence suggesting boat noise elicits a stress response in fish embryo and highlights the need to explore the ecological ramifications of boat noise stress during the embryo stage. Also, knowing the response of marine organisms caused by the sound emissions of particular engine types provides an important tool for reef managers to mitigate noise pollution.Research was funded by the ARC Center of Excellence for Coral Reef Studies (EI140100117), an International Postgraduate Research Scholarship awarded to S.J.S. from James Cook University and a UK Natural Environment Research Council grant to S.D.S. (NE/P001572/1)
Directional mass transport in an atmospheric pressure surface barrier discharge
In an atmospheric pressure surface barrier discharge the inherent physical separation between the plasma generation region and downstream point of application reduces the flux of reactive chemical species reaching the sample, potentially limiting application efficacy. This contribution explores the impact of manipulating the phase angle of the applied voltage to exert a level of control over the electrohydrodynamic forces generated by the plasma. As these forces produce a convective flow which is the primary mechanism of species transport, the technique facilitates the targeted delivery of reactive species to a downstream point without compromising the underpinning species generation mechanisms. Particle Imaging Velocimetry measurements are used to demonstrate that a phase shift between sinusoidal voltages applied to adjacent electrodes in a surface barrier discharge results in a significant deviation in the direction of the plasma induced gas flow. Using a two-dimensional numerical air plasma model, it is shown that the phase shift impacts the spatial distribution of the deposited charge on the dielectric surface between the adjacent electrodes. The modified surface charge distribution reduces the propagation length of the discharge ignited on the lagging electrode, causing an imbalance in the generated forces and consequently a variation in the direction of the resulting gas flow
Label-Dependencies Aware Recurrent Neural Networks
In the last few years, Recurrent Neural Networks (RNNs) have proved effective
on several NLP tasks. Despite such great success, their ability to model
\emph{sequence labeling} is still limited. This lead research toward solutions
where RNNs are combined with models which already proved effective in this
domain, such as CRFs. In this work we propose a solution far simpler but very
effective: an evolution of the simple Jordan RNN, where labels are re-injected
as input into the network, and converted into embeddings, in the same way as
words. We compare this RNN variant to all the other RNN models, Elman and
Jordan RNN, LSTM and GRU, on two well-known tasks of Spoken Language
Understanding (SLU). Thanks to label embeddings and their combination at the
hidden layer, the proposed variant, which uses more parameters than Elman and
Jordan RNNs, but far fewer than LSTM and GRU, is more effective than other
RNNs, but also outperforms sophisticated CRF models.Comment: 22 pages, 3 figures. Accepted at CICling 2017 conference. Best
Verifiability, Reproducibility, and Working Description awar
On the Energy Transfer Performance of Mechanical Nanoresonators Coupled with Electromagnetic Fields
We study the energy transfer performance in electrically and magnetically
coupled mechanical nanoresonators. Using the resonant scattering theory, we
show that magnetically coupled resonators can achieve the same energy transfer
performance as for their electrically coupled counterparts, or even outperform
them within the scale of interest. Magnetic and electric coupling are compared
in the Nanotube Radio, a realistic example of a nano-scale mechanical
resonator. The energy transfer performance is also discussed for a newly
proposed bio-nanoresonator composed of a magnetosomes coated with a net of
protein fibers.Comment: 9 Pages, 3 Figure
Lung function indices for predicting mortality in COPD
Chronic obstructive pulmonary disease (COPD) is characterised by high morbidity and mortality. It remains unknown which aspect of lung function carries the most prognostic information and if simple spirometry is sufficient. Survival was assessed in COPD outpatients whose data had been added prospectively to a clinical audit database from the point of first full lung function testing including spirometry, lung volumes, gas transfer and arterial blood gases. Variables univariately associated with survival were entered into a multivariate Cox proportional hazard model. 604 patients were included (mean±sd age 61.9±9.7 years; forced expiratory volume in 1 s 37±18.1% predicted; 62.9% males); 229 (37.9%) died during a median follow-up of 83 months. Median survival was 91.9 (95% CI 80.8–103) months with survival rates at 3 and 5 years 0.83 and 0.66, respectively. Carbon monoxide transfer factor % pred quartiles (best quartile (>51%): HR 0.33, 95% CI 0.172–0.639; and second quartile (51–37.3%): HR 0.52, 95% CI 0.322–0.825; versus lowest quartile (<27.9%)), age (HR 1.04, 95% CI 1.02–1.06) and arterial oxygen partial pressure (HR 0.85, 95% CI 0.77–0.94) were the only parameters independently associated with mortality. Measurement of gas transfer provides additional prognostic information compared to spirometry in patients under hospital follow-up and could be considered routinely
Compositionality, stochasticity and cooperativity in dynamic models of gene regulation
We present an approach for constructing dynamic models for the simulation of
gene regulatory networks from simple computational elements. Each element is
called a ``gene gate'' and defines an input/output-relationship corresponding
to the binding and production of transcription factors. The proposed reaction
kinetics of the gene gates can be mapped onto stochastic processes and the
standard ode-description. While the ode-approach requires fixing the system's
topology before its correct implementation, expressing them in stochastic
pi-calculus leads to a fully compositional scheme: network elements become
autonomous and only the input/output relationships fix their wiring. The
modularity of our approach allows to pass easily from a basic first-level
description to refined models which capture more details of the biological
system. As an illustrative application we present the stochastic repressilator,
an artificial cellular clock, which oscillates readily without any cooperative
effects.Comment: 15 pages, 8 figures. Accepted by the HFSP journal (13/09/07
Heterosexual couples and prostate cancer support groups: a gender relations analysis.
Introduction: Men diagnosed with prostate cancer (PCa) can receive supportive care from an array of sources including female partners and prostate cancer support groups (PCSGs). However, little is known about how heterosexual gender relations and supportive care play out among couples who attend PCSGs. Distilling such gender relation patterns is a key to understanding and advancing supportive care for men who experience PCa and their families
Transparent dense sodium
Under pressure, metals exhibit increasingly shorter interatomic distances.
Intuitively, this response is expected to be accompanied by an increase in the
widths of the valence and conduction bands and hence a more pronounced
free-electron-like behaviour. But at the densities that can now be achieved
experimentally, compression can be so substantial that core electrons overlap.
This effect dramatically alters electronic properties from those typically
associated with simple free-electron metals such as lithium and sodium, leading
in turn to structurally complex phases and superconductivity with a high
critical temperature. But the most intriguing prediction - that the seemingly
simple metals Li and Na will transform under pressure into insulating states,
owing to pairing of alkali atoms - has yet to be experimentally confirmed. Here
we report experimental observations of a pressure-induced transformation of Na
into an optically transparent phase at 200 GPa (corresponding to 5.0-fold
compression). Experimental and computational data identify the new phase as a
wide bandgap dielectric with a six-coordinated, highly distorted
double-hexagonal close-packed structure. We attribute the emergence of this
dense insulating state not to atom pairing, but to p-d hybridizations of
valence electrons and their repulsion by core electrons into the lattice
interstices. We expect that such insulating states may also form in other
elements and compounds when compression is sufficiently strong that atomic
cores start to overlap strongly.Comment: Published in Nature 458, 182-185 (2009
Quantum interference and Klein tunneling in graphene heterojunctions
The observation of quantum conductance oscillations in mesoscopic systems has
traditionally required the confinement of the carriers to a phase space of
reduced dimensionality. While electron optics such as lensing and focusing have
been demonstrated experimentally, building a collimated electron interferometer
in two unconfined dimensions has remained a challenge due to the difficulty of
creating electrostatic barriers that are sharp on the order of the electron
wavelength. Here, we report the observation of conductance oscillations in
extremely narrow graphene heterostructures where a resonant cavity is formed
between two electrostatically created bipolar junctions. Analysis of the
oscillations confirms that p-n junctions have a collimating effect on
ballistically transmitted carriers. The phase shift observed in the conductance
fringes at low magnetic fields is a signature of the perfect transmission of
carriers normally incident on the junctions and thus constitutes a direct
experimental observation of ``Klein Tunneling.''Comment: 13 pages and 6 figures including supplementary information. The paper
has been modified in light of new theoretical results available at
arXiv:0808.048
- …
