3,029 research outputs found

    Mixed pathologies including chronic traumatic encephalopathy account for dementia in retired Association football (soccer) players

    Get PDF
    In retired professional Association football (soccer) players with a past history of repetitive head impacts, chronic traumatic encephalopathy (CTE) is a potential neurodegenerative cause of dementia and motor impairments. From 1980 to 2010, 14 retired footballers with dementia were followed up regularly until death. Their clinical data, playing career and concussion history were prospectively collected. Next-of-kin consented for six to have post-mortem brain examination. Of the 14 male participants, 13 were professional and 1 was a committed amateur. All were skilled headers of the ball and had played football for an average of 26 years. Concussion rate was limited in six cases to one episode each during their careers. All cases developed progressive cognitive impairment with an average age at onset of 63.6 years and disease duration of 10 years. Neuropathological examination revealed septal abnormalities in all six post-mortem cases, supportive of a history of chronic repetitive head impacts. Four cases had pathologically confirmed CTE; concomitant pathologies included Alzheimer’s disease (N=6), TDP-43 (N=6), cerebral amyloid angiopathy (N=5), hippocampal sclerosis (N=2), corticobasal degeneration (N=1), dementia with Lewy bodies (N=1) and vascular pathology (N=1), all would have contributed synergistically to the clinical manifestations. The pathological diagnosis of CTE was established in four individuals according to the latest consensus diagnostic criteria. This finding is probably related to their past prolonged exposure to repetitive head impacts from head-to-player collisions and heading the ball thousands of time throughout their careers. Alzheimer’s disease and TDP-43 pathologies are common concomitant findings in CTE, both of which are increasingly considered as part of the CTE pathological entity in older individuals. Association Football is the most popular sport in the world and the potential link between repetitive head impacts from playing football and CTE as indicated from our findings is of considerable public health interest. Clearly a definitive link cannot be established in this clinico-pathological series, but our findings support the need for further systematic investigation including large scale case-control studies to identify at risk groups of footballers which will justify for the implementation of protective strategies

    Neutrino Mass, Sneutrino Dark Matter and Signals of Lepton Flavor Violation in the MRSSM

    Full text link
    We study the phenomenology of mixed-sneutrino dark matter in the Minimal R-Symmetric Supersymmetric Standard Model (MRSSM). Mixed sneutrinos fit naturally within the MRSSM, as the smallness (or absence) of neutrino Yukawa couplings singles out sneutrino A-terms as the only ones not automatically forbidden by R-symmetry. We perform a study of randomly generated sneutrino mass matrices and find that (i) the measured value of ΩDM\Omega_{DM} is well within the range of typical values obtained for the relic abundance of the lightest sneutrino, (ii) with small lepton-number-violating mass terms mnn2n~n~m_{nn}^{2} {\tilde n} {\tilde n} for the right-handed sneutrinos, random matrices satisfying the ΩDM\Omega_{DM} constraint have a decent probability of satisfying direct detection constraints, and much of the remaining parameter space will be probed by upcoming experiments, (iii) the mnn2n~n~m_{nn}^{2} {\tilde n} {\tilde n} terms radiatively generate appropriately small Majorana neutrino masses, with neutrino oscillation data favoring a mostly sterile lightest sneutrino with a dominantly mu/tau-flavored active component, and (iv) a sneutrino LSP with a significant mu component can lead to striking signals of e-mu flavor violation in dilepton invariant-mass distributions at the LHC.Comment: Revised collider analysis in Sec. 5 after fixing error in particle spectrum, References adde

    Higgs friends and counterfeits at hadron colliders

    Get PDF
    We consider the possibility of "Higgs counterfeits" - scalars that can be produced with cross sections comparable to the SM Higgs, and which decay with identical relative observable branching ratios, but which are nonetheless not responsible for electroweak symmetry breaking. We also consider a related scenario involving "Higgs friends," fields similarly produced through gg fusion processes, which would be discovered through diboson channels WW, ZZ, gamma gamma, or even gamma Z, potentially with larger cross sections times branching ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs counterfeit, rather than directly pointing towards the origin of the weak scale, would indicate the presence of new colored fields necessary for the sizable production cross section (and possibly new colorless but electroweakly charged states as well, in the case of the diboson decays of a Higgs friend). These particles could easily be confused for an ordinary Higgs, perhaps with an additional generation to explain the different cross section, and we emphasize the importance of vector boson fusion as a channel to distinguish a Higgs counterfeit from a true Higgs. Such fields would naturally be expected in scenarios with "effective Z's," where heavy states charged under the SM produce effective charges for SM fields under a new gauge force. We discuss the prospects for discovery of Higgs counterfeits, Higgs friends, and associated charged fields at the LHC.Comment: 27 pages, 5 figures. References added and typos fixe

    Lunar exploration: opening a window into the history and evolution of the inner Solar System

    Get PDF
    The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date, and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth-Moon system, and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap

    Confirmation of low genetic diversity and multiple breeding females in a social group of Eurasian badgers from microsatellite and field data

    Get PDF
    The Eurasian badger ( Meles meles ) is a facultatively social carnivore that shows only rudimentary co-operative behaviour and a poorly defined social hierarchy. Behavioural evidence and limited genetic data have suggested that more than one female may breed in a social group. We combine pregnancy detection by ultrasound and microsatellite locus scores from a well-studied badger population from Wytham Woods, Oxfordshire, UK, to demonstrate that multiple females reproduce within a social group. We found that at least three of seven potential mothers reproduced in a group that contained 11 reproductive age females and nine offspring. Twelve primers showed variability across the species range and only five of these were variable in Wytham. The microsatellites showed a reduced repeat number, a significantly higher number of nonperfect repeats, and moderate heterozygosity levels in Wytham. The high frequency of imperfect repeats and demographic phenomena might be responsible for the reduced levels of variability observed in the badger

    10-year outcomes in localized prostate cancer: Authors' reply

    Get PDF
    We agree with Klotz and Kibel that the lack of significant differences in survival among the three treatments makes a comparison between radiotherapy and surgery unwise. The predetermined power calculation for the ProtecT trial estimated a prostate-cancer mortality rate of 10% at a median of 10 years, and because the observed rate was 1%, longer follow-up is required to evaluate differences. We agree that the ProtecT findings should not be interpreted as a case against active surveillance. The similar rates of survival in the three groups, the lower rate of symptoms in the active-monitoring group than in the radical-treatment groups, and the finding that 80% of the men in the active-monitoring group remained progression- free provide evidence to support this option

    Mathematical modeling of the metastatic process

    Full text link
    Mathematical modeling in cancer has been growing in popularity and impact since its inception in 1932. The first theoretical mathematical modeling in cancer research was focused on understanding tumor growth laws and has grown to include the competition between healthy and normal tissue, carcinogenesis, therapy and metastasis. It is the latter topic, metastasis, on which we will focus this short review, specifically discussing various computational and mathematical models of different portions of the metastatic process, including: the emergence of the metastatic phenotype, the timing and size distribution of metastases, the factors that influence the dormancy of micrometastases and patterns of spread from a given primary tumor.Comment: 24 pages, 6 figures, Revie

    Harmonizing semantic annotations for computational models in biology

    Get PDF
    Life science researchers use computational models to articulate and test hypotheses about the behavior of biological systems. Semantic annotation is a critical component for enhancing the interoperability and reusability of such models as well as for the integration of the data needed for model parameterization and validation. Encoded as machine-readable links to knowledge resource terms, semantic annotations describe the computational or biological meaning of what models and data represent. These annotations help researchers find and repurpose models, accelerate model composition and enable knowledge integration across model repositories and experimental data stores. However, realizing the potential benefits of semantic annotation requires the development of model annotation standards that adhere to a community-based annotation protocol.Without such standards, tool developers must account for a variety of annotation formats and approaches, a situation that can become prohibitively cumbersome and which can defeat the purpose of linking model elements to controlled knowledge resource terms. Currently, no consensus protocol for semantic annotation exists among the larger biological modeling community. Here, we report on the landscape of current annotation practices among the Computational Modeling in BIology NEtwork community and provide a set of recommendations for building a consensus approach to semantic annotation

    A Collective Breaking of R-Parity

    Full text link
    Supersymmetric theories with an R-parity generally yield a striking missing energy signature, with cascade decays concluding in a neutralino that escapes the detector. In theories where R-parity is broken the missing energy is replaced with additional jets or leptons, often making traditional search strategies ineffective. Such R-parity violation is very constrained, however, by resulting B and L violating signals, requiring couplings so small that LSPs will decay outside the detector in all but a few scenarios. In theories with additional matter fields, R-parity can be broken collectively, such that R-parity is not broken by any single coupling, but only by an ensemble of couplings. Cascade decays can proceed normally, with each step only sensitive to one or two couplings at a time, but B and L violation requires the full set, yielding a highly suppressed constraint. s-channel production of new scalar states, typically small for standard RPV, can be large when RPV is broken collectively. While missing energy is absent, making these models difficult to discover by traditional SUSY searches, they produce complicated many object resonances (MORes), with many different possible numbers of jets and leptons. We outline a simple model and discuss its discoverability at the LHC.Comment: 28 pages, 10 figure

    A search for the decay modes B+/- to h+/- tau l

    Get PDF
    We present a search for the lepton flavor violating decay modes B+/- to h+/- tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472 million BBbar pairs. The search uses events where one B meson is fully reconstructed in one of several hadronic final states. Using the momenta of the reconstructed B, h, and l candidates, we are able to fully determine the tau four-momentum. The resulting tau candidate mass is our main discriminant against combinatorial background. We see no evidence for B+/- to h+/- tau l decays and set a 90% confidence level upper limit on each branching fraction at the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.
    corecore