726 research outputs found
Acquisition of pneumococci specific effector and regulatory Cd4+ T cells localising within human upper respiratory-tract mucosal lymphoid tissue
The upper respiratory tract mucosa is the location for commensal Streptococcus (S.) pneumoniae colonization and therefore represents a major site of contact between host and bacteria. The CD4(+) T cell response to pneumococcus is increasingly recognised as an important mediator of immunity that protects against invasive disease, with data suggesting a critical role for Th17 cells in mucosal clearance. By assessing CD4 T cell proliferative responses we demonstrate age-related sequestration of Th1 and Th17 CD4(+) T cells reactive to pneumococcal protein antigens within mucosal lymphoid tissue. CD25(hi) T cell depletion and utilisation of pneumococcal specific MHCII tetramers revealed the presence of antigen specific Tregs that utilised CTLA-4 and PDL-1 surface molecules to suppress these responses. The balance between mucosal effector and regulatory CD4(+) T cell immunity is likely to be critical to pneumococcal commensalism and the prevention of unwanted pathology associated with carriage. However, if dysregulated, such responses may render the host more susceptible to invasive pneumococcal infection and adversely affect the successful implementation of both polysaccharide-conjugate and novel protein-based pneumococcal vaccines
Human helminth therapy to treat inflammatory disorders - where do we stand?
Parasitic helminths have evolved together with the mammalian immune system over many millennia and as such they have become remarkably efficient modulators in order to promote their own survival. Their ability to alter and/or suppress immune responses could be beneficial to the host by helping control excessive inflammatory responses and animal models and pre-clinical trials have all suggested a beneficial effect of helminth infections on inflammatory bowel conditions, MS, asthma and atopy. Thus, helminth therapy has been suggested as a possible treatment method for autoimmune and other inflammatory disorders in humans
The microaerophilic microbiota of de-novo paediatric inflammatory bowel disease: the BISCUIT study
<p>Introduction: Children presenting for the first time with inflammatory bowel disease (IBD) offer a unique opportunity to study aetiological agents before the confounders of treatment. Microaerophilic bacteria can exploit the ecological niche of the intestinal epithelium; Helicobacter and Campylobacter are previously implicated in IBD pathogenesis. We set out to study these and other microaerophilic bacteria in de-novo paediatric IBD.</p>
<p>Patients and Methods: 100 children undergoing colonoscopy were recruited including 44 treatment naïve de-novo IBD patients and 42 with normal colons. Colonic biopsies were subjected to microaerophilic culture with Gram-negative isolates then identified by sequencing. Biopsies were also PCR screened for the specific microaerophilic bacterial groups: Helicobacteraceae, Campylobacteraceae and Sutterella wadsworthensis.</p>
<p>Results: 129 Gram-negative microaerophilic bacterial isolates were identified from 10 genera. The most frequently cultured was S. wadsworthensis (32 distinct isolates). Unusual Campylobacter were isolated from 8 subjects (including 3 C. concisus, 1 C. curvus, 1 C. lari, 1 C. rectus, 3 C. showae). No Helicobacter were cultured. When comparing IBD vs. normal colon control by PCR the prevalence figures were not significantly different (Helicobacter 11% vs. 12%, p = 1.00; Campylobacter 75% vs. 76%, p = 1.00; S. wadsworthensis 82% vs. 71%, p = 0.312).</p>
<p>Conclusions: This study offers a comprehensive overview of the microaerophilic microbiota of the paediatric colon including at IBD onset. Campylobacter appear to be surprisingly common, are not more strongly associated with IBD and can be isolated from around 8% of paediatric colonic biopsies. S. wadsworthensis appears to be a common commensal. Helicobacter species are relatively rare in the paediatric colon.</p>
A bacterial glycan core linked to surface (S)-layer proteins modulates host immunity through Th17 suppression
Tannerella forsythia is a pathogen implicated in periodontitis, an inflammatory disease of the tooth-supporting tissues often leading to tooth loss. This key periodontal pathogen is decorated with a unique glycan core O-glycosidically linked to the bacterium's proteinaceous surface (S)-layer lattice and other glycoproteins. Herein, we show that the terminal motif of this glycan core acts to modulate dendritic cell effector functions to suppress T-helper (Th)17 responses. In contrast to the wild-type bacterial strain, infection with a mutant strain lacking the complete S-layer glycan core induced robust Th17 and reduced periodontal bone loss in mice. Our findings demonstrate that surface glycosylation of this pathogen may act to ensure its persistence in the host likely through suppression of Th17 responses. In addition, our data suggest that the bacterium then induces the Toll-like receptor 2–Th2 inflammatory axis that has previously been shown to cause bone destruction. Our study provides a biological basis for pathogenesis and opens opportunities in exploiting bacterial glycans as therapeutic targets against periodontitis and a range of other infectious diseases
Addressing the double-burden of diabetes and tuberculosis : Lessons from Kyrgyzstan
Background: The incidence of diabetes and tuberculosis co-morbidity is rising, yet little work has been done to understand potential implications for health systems, healthcare providers and individuals. Kyrgyzstan is a priority country for tuberculosis control and has a 5% prevalence of diabetes in adults, with many health system challenges for both conditions. Methods: Patient exit interviews collected data on demographic and socio-economic characteristics, health spending and care seeking for people with diabetes, tuberculosis and both diabetes and tuberculosis. Qualitative data were collected through semi-structured interviews with healthcare workers involved in diabetes and tuberculosis care, to understand delivery of care and how providers view effectiveness of care. Results: The experience of co-affected individuals within the health system is different than those just with tuberculosis or diabetes. Co-affected patients do not receive more care and also have different care for their tuberculosis than people with only tuberculosis. Very high levels of catastrophic spending are found among all groups despite these two conditions being included in the Kyrgyz state benefit package especially for medicines. Conclusions: This study highlights that different patterns of service provision by disease group are found. Although Kyrgyzstan has often been cited as an example in terms of health reforms and developing Primary Health Care, this study highlights the challenge of managing conditions that are viewed as "too complicated" for non-specialists and the impact this has on costs and management of individuals
Додатковий том «Словника української мови»
У статті подано історію роботи над Додатковим томом «Словника української мови» в 11-ти томах, описано джерела наповнення реєстру, структуру словникових статей, наведено приклади розробки статей різного типу – як нововведених слів, так і таких, що були в «Словнику української мови» і зазнали доповнення. Завдання лексикографів, які працювали над Додатковим томом, – відобразити динаміку лексичного шару української мови 1980-их рр. ХХ ст. – початку ХХІ ст. з акцентуванням її інноваційних й актуалізованих аспектів
Airborne Microalgae: Insights, Opportunities and Challenges
Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment and possibly influence their deposition rates. This minireview presents a summary of these studies and traces the possible route, step-by-step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and environment, and the state-of-the-art techniques to detect
and model airborne microalgae dispersal. More detailed studies on microalgae atmospheric-cycle, including for instance ice nucleation activity and transport simulations, are crucial for improving our understanding of microalgae ecology, identifying their interactions with the environment and preventing unwanted sanitary events or invasions
Human Intestinal Cells Modulate Conjugational Transfer of Multidrug Resistance Plasmids between Clinical Escherichia coli Isolates.
Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co-cultured with human intestinal cells. We show that filtered media from co-cultures contain a factor that reduces conjugation efficiency. Protease treatment of the filtered media eliminates this inhibition of conjugation. This data suggests that a peptide or protein based factor is secreted on the apical side of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut
Modulation of host responses by oral commensal bacteria.
Immunomodulatory commensal bacteria are proposed to be essential for maintaining healthy tissues, having multiple roles including priming immune responses to ensure rapid and efficient defences against pathogens. The default state of oral tissues, like the gut, is one of inflammation which may be balanced by regulatory mechanisms and the activities of anti-inflammatory resident bacteria that modulate Toll-like receptor (TLR) signalling or NF-κB activation, or influence the development and activities of immune cells. However, the widespread ability of normal resident organisms to suppress inflammation could impose an unsustainable burden on the immune system and compromise responses to pathogens. Immunosuppressive resident bacteria have been isolated from the mouth and, for example, may constitute 30% of the resident streptococci in plaque or on the tongue. Their roles in oral health and dysbiosis remain to be determined. A wide range of bacterial components and/or products can mediate immunomodulatory activity, raising the possibility of development of alternative strategies for therapy and health promotion using probiotics, prebiotics, or commensal-derived immunomodulatory molecules
- …
