14 research outputs found

    Adaption of Seasonal H1N1 Influenza Virus in Mice

    Get PDF
    The experimental infection of a mouse lung with influenza A virus has proven to be an invaluable model for studying the mechanisms of viral adaptation and virulence. The mouse adaption of human influenza A virus can result in mutations in the HA and other proteins, which is associated with increased virulence in mouse lungs. In this study, a mouse-adapted seasonal H1N1 virus was obtained through serial lung-to-lung passages and had significantly increased virulence and pathogenicity in mice. Genetic analysis indicated that the increased virulence of the mouse-adapted virus was attributed to incremental acquisition of three mutations in the HA protein (T89I, N125T, and D221G). However, the mouse adaption of influenza A virus did not change the specificity and affinity of receptor binding and the pH-dependent membrane fusion of HA, as well as the in vitro replication in MDCK cells. Notably, infection with the mouse adapted virus induced severe lymphopenia and modulated cytokine and chemokine responses in mice. Apparently, mouse adaption of human influenza A virus may change the ability to replicate in mouse lungs, which induces strong immune responses and inflammation in mice. Therefore, our findings may provide new insights into understanding the mechanisms underlying the mouse adaption and pathogenicity of highly virulent influenza viruses

    Influenza virus infection is associated with increased risk of death amongst patients hospitalized with confirmed pulmonary tuberculosis in South Africa, 2010–2011

    Get PDF
    BACKGROUND : Data on the association between influenza and tuberculosis are limited. We describe the characteristics of patients with laboratory-confirmed tuberculosis, laboratory-confirmed influenza and tuberculosis-influenza co-infection. METHODS : Patients hospitalized with severe respiratory illness (acute and chronic) were enrolled prospectively in four provinces in South Africa. Naso/oropharyngeal specimens were tested for influenza virus by real time reverse transcriptase polymerase chain reaction. Tuberculosis testing was conducted as part of clinical management. RESULTS : From June 2010 through December 2011, 8032 patients were enrolled and influenza testing was conducted on 7863 (98%). Influenza virus was detected in 765 (10%) patients. Among 2959 patients with tuberculosis and influenza results, 2227 (75%) were negative for both pathogens, 423 (14%) were positive for tuberculosis alone, 275 (9%) were positive for influenza alone and 34 (1%) had influenza and tuberculosis co-infection. On multivariable analysis amongst individuals with symptoms for ≥7 days, tuberculosis influenza co-infection was associated with increased risk of death, (adjusted relative risk ratio (aRRR) (6.1, 95% confidence interval (CI) 1.6-23.4), as compared to tuberculosis only infection. This association was not observed in individuals with symptoms for <7 days (aRRR.0.8, 95% CI 0.1-7.0). CONCLUSION : Tuberculosis and influenza co-infection compared to tuberculosis single infection was associated with increased risk of death in individuals with symptoms ≥7 days. The potential public health impact of influenza vaccination among persons with laboratory-confirmed tuberculosis should be explored.http://www.biomedcentral.com/bmcinfectdis/hb201
    corecore