2,381 research outputs found
Cooling system analysis for a data center using liquid immersed servers
Data centers are large consumers of power, of which a large proportion is spent on removing the heat generated by the semiconductors inside IT servers. This paper develops a full analysis of the cooling system when servers are immersed in a dielectric liquid and water is used to transport the heat outside of the data center. The analysis combines empirical curve fits and flow analysis with computational fluid dynamics (CFD) simulations of liquid immersed servers placed in parallel in a rack of a data center. The liquid immersed server concept is based on a dielectric liquid that is in direct contact with the semiconductor components to improve heat rejection. The heat generated from the microelectronics is naturally convected, via buoyancy, in the dielectric liquid to a cold plate on the opposing side. The cooling system of the data center in this study consists of a dry air cooler and a liquid-to-liquid buffer heat exchanger. It was found that the power usage effectiveness (PUE) is as low as 1.08 for the cooling system. The results also show that the PUE is affected by the server-rack occupancy and can increase by 26% as occupancy drops by 80%, thus the better the server-rack occupancy, the better the PUE
Simulation of the spreading of a gas-propelled micro-droplet upon impact on a dry surface using a lattice-Boltzmann approach
Spray cooling is one of the most promising methods of cooling high heat flux electronics. Depending on the type of the nozzle, spray cooling can be categorized as single phase or two phase. In the latter, which is known to be more effective, a secondary gas is used to further pressurize the liquid and form smaller droplets at higher velocities. The gas is also assumed to assist the spreading phase by imposing normal and tangential forces on the droplet free surface which adds to the complicated hydrodynamics of the droplet impact. Moreover, the order of magnitude of droplet size in spray cooling is 10¯⁶m thereby introducing a low Weber and Reynolds numbers impact regime which heretofore has not been well understood. A 3D lattice Boltzmann method was implemented to simulate the impact of a single micro-droplet on a dry surface in both ambient air and under a stagnation gas flow. Two cases were closely compared and correlations were proposed for the instantaneous spreading diameter. Contrary to recent findings at higher impact We and Re, it was found that stagnation flow only significantly affects the spreading phase for Ca*⩾0.35 but has little influence on the receding physics
Patent Human Infections with the Whipworm, Trichuris trichiura, Are Not Associated with Alterations in the Faecal Microbiota
Background: The soil-transmitted helminth (STH), Trichuris trichiura colonises the human large intestine where it may
modify inflammatory responses, an effect possibly mediated through alterations in the intestinal microbiota. We
hypothesised that patent T. trichiura infections would be associated with altered faecal microbiota and that anthelmintic treatment would induce a microbiota resembling more closely that observed in uninfected individuals.
Materials and Methods: School children in Ecuador were screened for STH infections and allocated to 3 groups: uninfected, T. trichiura only, and mixed infections with T. trichiura and Ascaris lumbricoides. A sample of uninfected children and those with T. trichiura infections only were given anthelmintic treatment. Bacterial community profiles in faecal samples were studied by 454 pyrosequencing of 16 S rRNA genes.
Results: Microbiota analyses of faeces were done for 97 children: 30 were uninfected, 17 were infected with T. trichiura, and 50 with T. trichiura and A. lumbricoides. Post-treatment samples were analyzed for 14 children initially infected with T. trichiura alone and for 21 uninfected children. Treatment resulted in 100% cure of STH infections. Comparisons of the microbiota at different taxonomic levels showed no statistically significant differences in composition between uninfected
children and those with T. trichiura infections. We observed a decreased proportional abundance of a few bacterial genera from the Clostridia class of Firmicutes and a reduced bacterial diversity among children with mixed infections compared to the other two groups, indicating a possible specific effect of A. lumbricoides infection. Anthelmintic treatment of children with T. trichiura did not alter faecal microbiota composition.
Discussion: Our data indicate that patent human infections with T. trichiura may have no effect on faecal microbiota but that A. lumbricoides colonisation might be associated with a disturbed microbiota. Our results also catalogue the microbiota of rural Ecuadorians and indicate differences with individuals from more urban industrialised societies
Human helminth therapy to treat inflammatory disorders - where do we stand?
Parasitic helminths have evolved together with the mammalian immune system over many millennia and as such they have become remarkably efficient modulators in order to promote their own survival. Their ability to alter and/or suppress immune responses could be beneficial to the host by helping control excessive inflammatory responses and animal models and pre-clinical trials have all suggested a beneficial effect of helminth infections on inflammatory bowel conditions, MS, asthma and atopy. Thus, helminth therapy has been suggested as a possible treatment method for autoimmune and other inflammatory disorders in humans
Sociobiological Control of Plasmid copy number
Background:
All known mechanisms and genes responsible for the regulation of plasmid replication lie with the plasmid rather than the chromosome. It is possible therefore that there can be copy-up mutants. Copy-up mutants will have within host selective advantage. This would eventually result into instability of bacteria-plasmid association. In spite of this possibility low copy number plasmids appear to exist stably in host populations. We examined this paradox using a computer simulation model.

Model:
Our multilevel selection model assumes a wild type with tightly regulated replication to ensure low copy number. A mutant with slightly relaxed replication regulation can act as a “cheater” or “selfish” plasmid and can enjoy a greater within-host-fitness. However the host of a cheater plasmid has to pay a greater cost. As a result, in host level competition, host cell with low copy number plasmid has a greater fitness. Furthermore, another mutant that has lost the genes required for conjugation was introduced in the model. The non-conjugal mutant was assumed to undergo conjugal transfer in the presence of another conjugal plasmid in the host cell.

Results:
The simulatons showed that if the cost of carrying a plasmid was low, the copy-up mutant could drive the wild type to extinction or very low frequencies. Consequently, another mutant with a higher copy number could invade the first invader. This process could result into an increasing copy number. However above a certain copy number within-host selection was overcompensated by host level selection leading to a rock-paper-scissor (RPS) like situation. The RPS situation allowed the coexistence of high and low copy number plasmids. The non-conjugal “hypercheaters” could further arrest the copy numbers to a substantially lower level.

Conclusions:
These sociobiological interactions might explain the stability of copy numbers better than molecular mechanisms of replication regulation alone
Phenotypic and Genetic Divergence among Poison Frog Populations in a Mimetic Radiation
The evolution of Müllerian mimicry is, paradoxically, associated with high levels of diversity in color and pattern. In a mimetic radiation, different populations of a species evolve to resemble different models, which can lead to speciation. Yet there are circumstances under which initial selection for divergence under mimicry may be reversed. Here we provide evidence for the evolution of extensive phenotypic divergence in a mimetic radiation in Ranitomeya imitator, the mimic poison frog, in Peru. Analyses of color hue (spectral reflectance) and pattern reveal substantial divergence between morphs. However, we also report that there is a “transition-zone� with mixed phenotypes. Analyses of genetic structure using microsatellite variation reveals some differentiation between populations, but this does not strictly correspond to color pattern divergence. Analyses of gene flow between populations suggest that, while historical levels of gene flow were low, recent levels are high in some cases, including substantial gene flow between some color pattern morphs. We discuss possible explanations for these observations
Experimental and Theoretical Investigation of Droplet Evaporation on Heated Hydrophilic and Hydrophobic Surfaces
The evaporation characteristics of sessile droplets on heated hydrophobic and hydrophilic surfaces are investigated. Results are reported for the evaporation of water droplet volumes covering a range of shapes dominated by surface tension or gravity and over a range of temperatures between 40 and 60 °C. The weight evolution and total time of evaporation is measured using a novel self-contained heating stage on a high resolution analytical balance, which has advantages over visualization measurement techniques as it allows free choice of the initial droplet size and surface and the ability to record the droplet evaporation right through to the final stages of droplet life. Evaporation is modeled through a combination of a constant contact area and a constant contact angle model with the switch from the former to the latter occurring when the contact angle falls below its predetermined receding value. Theoretical results compare well with the experimental results for the hydrophobic substrate. However, a significant deviation is observed for the hydrophilic substrate due to the combined effects of the droplet surface cooling due to evaporation and buoyancy effects that are not included in the model. The proposed method of using the stick–slip model offers a convenient means of modeling droplet evaporation by mimicking the drying modes based on initial measurements of the static and receding contact angles
Rack Level Study of Hybrid Liquid/Air Cooled Servers: The Impact of Flow Distribution and Pumping Configuration on Central Processing Units Temperature
The flow distribution and central processing unit (CPU) temperatures inside a rack of thirty 1 U (single rack unit) Sun Fire V20z servers retrofitted with direct-to-chip liquid cooling and two coolant pumping configuration scenarios (central and distributed) are investigated using the EPANET open source network flow software. The results revealed that the servers in the top of the rack and close to the cooling distribution unit can receive up 30% higher flow rate than the servers in the bottom of the rack, depending on the pumping scenario. This results in a variation in the CPU temperatures depending on the position in the rack. Optimization analysis is carried out and shows that increasing the flow distribution manifold’s dimensions can reduce the flow variation through the servers and increase the total coolant flow rate in the rack by roughly 10%. In addition, activating the small pumps in the direct-to-chip liquid cooling loops inside the servers (distributed pumping) resulted in an increase of 2 °C in the CPU temperatures at the high computational workload
- …
