4,782 research outputs found
Tactical Voting in Plurality Elections
How often will elections end in landslides? What is the probability for a
head-to-head race? Analyzing ballot results from several large countries rather
anomalous and yet unexplained distributions have been observed. We identify
tactical voting as the driving ingredient for the anomalies and introduce a
model to study its effect on plurality elections, characterized by the relative
strength of the feedback from polls and the pairwise interaction between
individuals in the society. With this model it becomes possible to explain the
polarization of votes between two candidates, understand the small margin of
victories frequently observed for different elections, and analyze the polls'
impact in American, Canadian, and Brazilian ballots. Moreover, the model
reproduces, quantitatively, the distribution of votes obtained in the Brazilian
mayor elections with two, three, and four candidates.Comment: 7 pages, 4 figure
Gravitational energy of a magnetized Schwarzschild black hole - a teleparallel approach
We investigate the distribution of gravitational energy on the spacetime of a
Schwarzschild black hole immersed in a cosmic magnetic field. This is done in
the context of the {\it Teleparallel Equivalent of General Relativity}, which
is an alternative geometrical formulation of General Relativity, where gravity
is describe by a spacetime endowed with torsion, rather than curvature, with
the fundamental field variables being tetrads. We calculate the energy enclosed
by a two-surface of constant radius - in particular, the energy enclosed by the
event horizon of the black hole. In this case we find that the magnetic field
has the effect of increasing the gravitational energy as compared to the vacuum
Schwarzschild case. We also compute the energy (i) in the weak magnetic field
limit, (ii) in the limit of vanishing magnetic field, and (iii) in the absence
of the black hole. In all cases our results are consistent with what should be
expected on physical grounds.Comment: version to match the one to be published on General Relativity and
Gravitatio
Gauss-Bonnet Black Holes and Heavy Fermion Metals
We consider charged black holes in Einstein-Gauss-Bonnet Gravity with
Lifshitz boundary conditions. We find that this class of models can reproduce
the anomalous specific heat of condensed matter systems exhibiting
non-Fermi-liquid behaviour at low temperatures. We find that the temperature
dependence of the Sommerfeld ratio is sensitive to the choice of Gauss-Bonnet
coupling parameter for a given value of the Lifshitz scaling parameter. We
propose that this class of models is dual to a class of models of
non-Fermi-liquid systems proposed by Castro-Neto et.al.Comment: 17 pages, 6 figures, pdfLatex; small corrections to figure 10 in this
versio
No chiral truncation of quantum log gravity?
At the classical level, chiral gravity may be constructed as a consistent
truncation of a larger theory called log gravity by requiring that left-moving
charges vanish. In turn, log gravity is the limit of topologically massive
gravity (TMG) at a special value of the coupling (the chiral point). We study
the situation at the level of linearized quantum fields, focussing on a unitary
quantization. While the TMG Hilbert space is continuous at the chiral point,
the left-moving Virasoro generators become ill-defined and cannot be used to
define a chiral truncation. In a sense, the left-moving asymptotic symmetries
are spontaneously broken at the chiral point. In contrast, in a non-unitary
quantization of TMG, both the Hilbert space and charges are continuous at the
chiral point and define a unitary theory of chiral gravity at the linearized
level.Comment: 20 pages, no figures, references adde
The regulatory subunit of PKA-I remains partially structured and undergoes β-aggregation upon thermal denaturation
Background: The regulatory subunit (R) of cAMP-dependent protein kinase (PKA) is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381) that contains the tandem cyclic nucleotide binding (CNB) domains A and B. Methodology/Principal Findings: As revealed by circular dichroism (CD) and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212-216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers. Conclusions/Significance: Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation. © 2011 Dao et al
Doping the holographic Mott insulator
Mott insulators form because of strong electron repulsions, being at the
heart of strongly correlated electron physics. Conventionally these are
understood as classical "traffic jams" of electrons described by a short-ranged
entangled product ground state. Exploiting the holographic duality, which maps
the physics of densely entangled matter onto gravitational black hole physics,
we show how Mott-insulators can be constructed departing from entangled
non-Fermi liquid metallic states, such as the strange metals found in cuprate
superconductors. These "entangled Mott insulators" have traits in common with
the "classical" Mott insulators, such as the formation of Mott gap in the
optical conductivity, super-exchange-like interactions, and form "stripes" when
doped. They also exhibit new properties: the ordering wave vectors are detached
from the number of electrons in the unit cell, and the DC resistivity diverges
algebraically instead of exponentially as function of temperature. These
results may shed light on the mysterious ordering phenomena observed in
underdoped cuprates.Comment: 27 pages, 9 figures. Accepted in Nature Physic
Holography For a De Sitter-Esque Geometry
Warped dS arises as a solution to topologically massive gravity (TMG)
with positive cosmological constant and Chern-Simons coefficient
in the region . It is given by a real line fibration
over two-dimensional de Sitter space and is equivalent to the rotating Nariai
geometry at fixed polar angle. We study the thermodynamic and asymptotic
structure of a family of geometries with warped dS asymptotics.
Interestingly, these solutions have both a cosmological horizon and an internal
one, and their entropy is unbounded from above unlike black holes in regular de
Sitter space. The asymptotic symmetry group resides at future infinity and is
given by a semi-direct product of a Virasoro algebra and a current algebra. The
right moving central charge vanishes when . We discuss the
possible holographic interpretation of these de Sitter-esque spacetimes.Comment: 22 pages, 1 figure; v2: typos corrected, to match with published
versio
Non-Equilibrium Field Dynamics of an Honest Holographic Superconductor
Most holographic models of superconducting systems neglect the effects of
dynamical boundary gauge fields during the process of spontaneous
symmetry-breaking. Usually a global symmetry gets broken. This yields a
superfluid, which then is gauged "weakly" afterwards. In this work we build
(and probe the dynamics of) a holographic model in which a local boundary
symmetry is spontaneously broken instead. We compute two-point functions of
dynamical non-Abelian gauge fields in the normal and in the broken phase, and
find non-trivial gapless modes. Our AdS3 gravity dual realizes a p-wave
superconductor in (1+1) dimensions. The ground state of this model also breaks
(1+1)-dimensional parity spontaneously, while the Hamiltonian is
parity-invariant. We discuss possible implications of our results for a wider
class of holographic liquids.Comment: 32 pages, 12 figures; v3: string theory derivation of setup added
(section 3.1), improved presentation, version accepted by JHEP; v2: paragraph
added to discussion, figure added, references added, typos correcte
Literature-based discovery of diabetes- and ROS-related targets
Abstract Background Reactive oxygen species (ROS) are known mediators of cellular damage in multiple diseases including diabetic complications. Despite its importance, no comprehensive database is currently available for the genes associated with ROS. Methods We present ROS- and diabetes-related targets (genes/proteins) collected from the biomedical literature through a text mining technology. A web-based literature mining tool, SciMiner, was applied to 1,154 biomedical papers indexed with diabetes and ROS by PubMed to identify relevant targets. Over-represented targets in the ROS-diabetes literature were obtained through comparisons against randomly selected literature. The expression levels of nine genes, selected from the top ranked ROS-diabetes set, were measured in the dorsal root ganglia (DRG) of diabetic and non-diabetic DBA/2J mice in order to evaluate the biological relevance of literature-derived targets in the pathogenesis of diabetic neuropathy. Results SciMiner identified 1,026 ROS- and diabetes-related targets from the 1,154 biomedical papers (http://jdrf.neurology.med.umich.edu/ROSDiabetes/). Fifty-three targets were significantly over-represented in the ROS-diabetes literature compared to randomly selected literature. These over-represented targets included well-known members of the oxidative stress response including catalase, the NADPH oxidase family, and the superoxide dismutase family of proteins. Eight of the nine selected genes exhibited significant differential expression between diabetic and non-diabetic mice. For six genes, the direction of expression change in diabetes paralleled enhanced oxidative stress in the DRG. Conclusions Literature mining compiled ROS-diabetes related targets from the biomedical literature and led us to evaluate the biological relevance of selected targets in the pathogenesis of diabetic neuropathy.http://deepblue.lib.umich.edu/bitstream/2027.42/78315/1/1755-8794-3-49.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/2/1755-8794-3-49-S7.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/3/1755-8794-3-49-S10.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/4/1755-8794-3-49-S8.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/5/1755-8794-3-49-S3.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/6/1755-8794-3-49-S1.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/7/1755-8794-3-49-S4.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/8/1755-8794-3-49-S2.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/9/1755-8794-3-49-S12.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/10/1755-8794-3-49-S11.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/11/1755-8794-3-49-S9.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/12/1755-8794-3-49-S5.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/13/1755-8794-3-49-S6.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/14/1755-8794-3-49.pdfPeer Reviewe
Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum
Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism
- …
