18 research outputs found
How to misuse echo contrast
<p>Abstract</p> <p>Background</p> <p>Primary intracardiac tumours are rare, there are however several entities that can mimic tumours. Contrast echocardiography has been suggested to aid the differentiation of various suspected masses. We present a case where transthoracic echocardiography completely misdiagnosed a left atrial mass, partly due to use of echo contrast.</p> <p>Case presentation</p> <p>An 80 year-old woman was referred for transthoracic echocardiography because of one-month duration of worsening of dyspnoea. Transthoracic echocardiography displayed a large echodense mass in the left atrium. Intravenous injection of contrast (SonoVue, Bracco Inc., It) indicated contrast-enhancement of the structure, suggesting tumour. Transesophageal echocardiography revealed, however, a completely normal finding in the left atrium. Subsequent gastroscopy examination showed a hiatal hernia.</p> <p>Conclusion</p> <p>It is noteworthy that the transthoracic echocardiographic exam completely misdiagnosed what seemed like a left atrial mass, which in part was an effect of the use of echo contrast. This example highlights that liberal use of transoesophageal echocardiography is often warranted if optimal display of cardiac structures is desired.</p
Wave similarity mapping shows the spatiotemporal distribution of fibrillatory wave complexity in the human right atrium during paroxysmal and chronic atrial fibrillation
Introduction: The complexity of waveforms during atrial fibrillation may reflect critical activation patterns for the arrhythmia perpetuation. In this study, we introduce a novel concept of map, based on the analysis of the wave morphology, which gives a direct evidence in the human right atrium on the spatiotemporal distribution of fibrillatory wave complexity in paroxysmal (PAF) and chronic (CAF) atrial fibrillation. Methods and Results: Electrograms were recorded from a 64-electrode catheter in the right atrium of 15 patients during PAF (n = 8) and CAF (n = 7). Wave similarity maps were constructed by calculating the degree of morphological similarity of activation waves (S) at each atrial site and by following its temporal evolution. During PAF the spatiotemporal distribution of the waveforms was highly consistent across the subjects and was determined by the anatomic location. Wave similarity maps showed the existence of an extended area with low similarity index, which covered the low posteroseptal atrium (S = 0.28 \uc2\ub1 0.09) and the septal region (S = 0.22 \uc2\ub1 0.04), and the presence of a large tongue with high similarity index, which penetrated the lateral wall (S = 0.55 \uc2\ub1 0.08) starting from the high anterolateral atrium (S = 0.54 \uc2\ub1 0.06). A completely different spatiotemporal pattern was seen during CAF. No distinct regions with different similarity indexes were recognized, but a uniformly distributed low similarity index (S = 0.27 \uc2\ub1 0.07) was found. The spatial pattern was highly stable in time with fluctuations of S < 0.04. Conclusion: Quantification of the spatiotemporal distribution of fibrillatory wave complexity is feasible in humans by wave similarity mapping. Anatomic anchoring of waveforms during PAF and pattern destruction during CAF was determined
