486 research outputs found
Polymorphism and chromosomal localization of the porcine signal transducer and activator of transcription 5B gene (STAT5B)
Signal transducers and activators of transcription (STATs) are a family of
transcription factors. STAT5A and 5B are two highly related proteins
encoded by two distinct genes. Transgenic knockout mice studies have
indicated the importance of STAT5 proteins for the regulation of both
lactation and growth performance. Moreover, different studies determine
the role of STAT5 proteins in the modulation of adipocyte function.
In this study, we sequenced one fragment of STAT5B gene from
animals of six breeds (Duroc, Iberian, Landrace, Large White, Pie´train
and Meishan) to identify genetic variants. A G/A single nucleotide polymorphism
in intron 14 creates a polymorphic PstI restriction site and
was genotyped by polymerase chain reaction restriction fragment length
polymorphism in the six breeds. Allele G was only present in Large
White, Pie´train and Meishan populations, detecting only G allele in this
last pig breed. The STAT5B gene was located by radiation hybrid mapping
to porcine chromosome 12, within the confidence interval for the
fatty acid composition quantitative trait loci, previously identified in an
Iberian · Landrace cross
Assignment of signal transducer and activator of transcription 5A (STAT5A) to porcine chromosome 12p13→p11 by radiation hybrid panel mapping
Evaluation of the Multilook Size in Polarimetric Optimization of Differential SAR Interferograms
The interferometric coherence is a measure of the correlation between two SAR images and constitutes a commonly used estimator of the phase quality. Its estimation requires a spatial average within a 2-D window, usually named as multilook. The multilook processing allows reducing noise at the expenses of a resolution loss. In this letter, we analyze the influence of the multilook size while applying a polarimetric optimization of the coherence. The same optimization algorithm has been carried out with different multilook sizes and also with the nonlocal SAR filter filter, which has the advantage of preserving the original resolution of the interferogram. Our experiments have been carried out with a single pair of quad-polarimetric RADARSAT-2 images mapping the Mount Etna's volcanic eruption of May 2008. Results obtained with this particular data set show that the coherence is increased notably with respect to conventional channels when small multilook sizes are employed, especially over low-vegetated areas. Conversely, very decorrelated areas benefit from larger multilook sizes but do not exhibit an additional improvement with the polarimetric optimization
ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument
The Dark Energy Spectroscopic Instrument (DESI) is under construction to
measure the expansion history of the universe using the baryon acoustic
oscillations technique. The spectra of 35 million galaxies and quasars over
14,000 square degrees will be measured during a 5-year survey. A new prime
focus corrector for the Mayall telescope at Kitt Peak National Observatory will
deliver light to 5,000 individually targeted fiber-fed robotic positioners. The
fibers in turn feed ten broadband multi-object spectrographs. We describe the
ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall
telescope from August 14 to September 30, 2016. ProtoDESI was an on-sky
technology demonstration with the goal to reduce technical risks associated
with aligning optical fibers with targets using robotic fiber positioners and
maintaining the stability required to operate DESI. The ProtoDESI prime focus
instrument, consisting of three fiber positioners, illuminated fiducials, and a
guide camera, was installed behind the existing Mosaic corrector on the Mayall
telescope. A Fiber View Camera was mounted in the Cassegrain cage of the
telescope and provided feedback metrology for positioning the fibers. ProtoDESI
also provided a platform for early integration of hardware with the DESI
Instrument Control System that controls the subsystems, provides communication
with the Telescope Control System, and collects instrument telemetry data.
Lacking a spectrograph, ProtoDESI monitored the output of the fibers using a
Fiber Photometry Camera mounted on the prime focus instrument. ProtoDESI was
successful in acquiring targets with the robotically positioned fibers and
demonstrated that the DESI guiding requirements can be met.Comment: Accepted versio
Recommended from our members
Radiogenic backgrounds in the NEXT double beta decay experiment
Natural radioactivity represents one of the main backgrounds in the search for neutrinoless double beta decay. Within the NEXT physics program, the radioactivity- induced backgrounds are measured with the NEXT-White detector. Data from 37.9 days of low-background operations at the Laboratorio Subterráneo de Canfranc with xenon depleted in 136Xe are analyzed to derive a total background rate of (0.84±0.02) mHz above 1000 keV. The comparison of data samples with and without the use of the radon abatement system demonstrates that the contribution of airborne-Rn is negligible. A radiogenic background model is built upon the extensive radiopurity screening campaign conducted by the NEXT collaboration. A spectral fit to this model yields the specific contributions of 60Co, 40K, 214Bi and 208Tl to the total background rate, as well as their location in the detector volumes. The results are used to evaluate the impact of the radiogenic backgrounds in the double beta decay analyses, after the application of topological cuts that reduce the total rate to (0.25±0.01) mHz. Based on the best-fit background model, the NEXT-White median sensitivity to the two-neutrino double beta decay is found to be 3.5σ after 1 year of data taking. The background measurement in a Qββ±100 keV energy window validates the best-fit background model also for the neutrinoless double beta decay search with NEXT-100. Only one event is found, while the model expectation is (0.75±0.12) events. [Figure not available: see fulltext.]
Recommended from our members
Demonstration of the event identification capabilities of the NEXT-White detector
In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper we present the first measurement of the efficiency of a cut based on the different event signatures of double and single electron tracks, using the data of the NEXT-White detector, the first detector of the NEXT experiment operating underground. Using a 228Th calibration source to produce signal-like and background-like events with energies near 1.6 MeV, a signal efficiency of 71.6 ± 1.5 stat± 0.3 sys% for a background acceptance of 20.6 ± 0.4 stat± 0.3 sys% is found, in good agreement with Monte Carlo simulations. An extrapolation to the energy region of the neutrinoless double beta decay by means of Monte Carlo simulations is also carried out, and the results obtained show an improvement in background rejection over those obtained at lower energies. [Figure not available: see fulltext.
Recommended from our members
Discovery of novel GPVI receptor antagonists by structure-based repurposing.
Inappropriate platelet aggregation creates a cardiovascular risk that is largely managed with thienopyridines and aspirin. Although effective, these drugs carry risks of increased bleeding and drug 'resistance', underpinning a drive for new antiplatelet agents. To discover such drugs, one strategy is to identify a suitable druggable target and then find small molecules that modulate it. A good and unexploited target is the platelet collagen receptor, GPVI, which promotes thrombus formation. To identify inhibitors of GPVI that are safe and bioavailable, we docked a FDA-approved drug library into the GPVI collagen-binding site in silico. We now report that losartan and cinanserin inhibit GPVI-mediated platelet activation in a selective, competitive and dose-dependent manner. This mechanism of action likely underpins the cardioprotective effects of losartan that could not be ascribed to its antihypertensive effects. We have, therefore, identified small molecule inhibitors of GPVI-mediated platelet activation, and also demonstrated the utility of structure-based repurposing
Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato
Phenylpropanoids comprise an important class of plant secondary metabolites. A number of transcription factors have been used to upregulate-specific branches of phenylpropanoid metabolism, but by far the most effective has been the fruit-specific expression of AtMYB12 in tomato, which resulted in as much as 10% of fruit dry weight accumulating as flavonols and hydroxycinnamates. We show that AtMYB12 not only increases the demand of flavonoid biosynthesis but also increases the supply of carbon from primary metabolism, energy and reducing power, which may fuel the shikimate and phenylalanine biosynthetic pathways to supply more aromatic amino acids for secondary metabolism. AtMYB12 directly binds promoters of genes encoding enzymes of primary metabolism. The enhanced supply of precursors, energy and reducing power achieved by AtMYB12 expression can be harnessed to engineer high levels of novel phenylpropanoids in tomato fruit, offering an effective production system for bioactives and other high value ingredients
Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca's large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells
Recommended from our members
Effects of conversion of native cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier
Understanding the impacts of land-use change on landscape-hydrological dynamics is one of the main challenges in the Northern Brazilian Cerrado biome, where the Amazon agricultural frontier is located. Motivated by the gap in literature assessing these impacts, we characterized the soil hydro-physical properties and quantified surface water fluxes from catchments under contrasting land-use in this region. We used data from field measurements in two headwater micro-catchments with similar physical characteristics and different land use, i.e. cerrado sensu stricto vegetation and pasture for extensive cattle ranching. We determined hydraulic and physical properties of the soils, applied ground-based remote sensing techniques to estimate evapotranspiration, and monitored streamflow from October 2012 to September 2014. Our results show significant differences in soil hydro-physical properties between the catchments, with greater bulk density and smaller total porosity in the pasture catchment. We found that evapotranspiration is smaller in the pasture (639 ± 31% mm yr-1) than in the cerrado catchment (1,004 ± 24% mm yr-1), and that streamflow from the pasture catchment is greater with runoff coefficients of 0.40 for the pasture and 0.27 for the cerrado catchment. Overall, our results confirm that conversion of cerrado vegetation to pasture causes soil hydro-physical properties deterioration, reduction in evapotranspiration reduction, and increased streamflow
- …
