14 research outputs found
Four small puzzles that Rosetta doesn't solve
A complete macromolecule modeling package must be able to solve the simplest
structure prediction problems. Despite recent successes in high resolution
structure modeling and design, the Rosetta software suite fares poorly on
deceptively small protein and RNA puzzles, some as small as four residues. To
illustrate these problems, this manuscript presents extensive Rosetta results
for four well-defined test cases: the 20-residue mini-protein Trp cage, an even
smaller disulfide-stabilized conotoxin, the reactive loop of a serine protease
inhibitor, and a UUCG RNA tetraloop. In contrast to previous Rosetta studies,
several lines of evidence indicate that conformational sampling is not the
major bottleneck in modeling these small systems. Instead, approximations and
omissions in the Rosetta all-atom energy function currently preclude
discriminating experimentally observed conformations from de novo models at
atomic resolution. These molecular "puzzles" should serve as useful model
systems for developers wishing to make foundational improvements to this
powerful modeling suite.Comment: Published in PLoS One as a manuscript for the RosettaCon 2010 Special
Collectio
Unusual Loop-Sequence Flexibility of the Proximal RNA Replication Element in EMCV
Picornaviruses contain stable RNA structures at the 5′ and 3′ ends of the RNA genome, OriL and OriR involved in viral RNA replication. The OriL RNA element found at the 5′ end of the enterovirus genome folds into a cloverleaf-like configuration. In vivo SELEX experiments revealed that functioning of the poliovirus cloverleaf depends on a specific structure in this RNA element. Little is known about the OriL of cardioviruses. Here, we investigated structural aspects and requirements of the apical loop of proximal stem-loop SL-A of mengovirus, a strain of EMCV. Using NMR spectroscopy, we showed that the mengovirus SL-A apical loop consists of an octaloop. In vivo SELEX experiments demonstrated that a large number of random sequences are tolerated in the apical octaloop that support virus replication. Mutants in which the SL-A loop size and the length of the upper part of the stem were varied showed that both stem-length and stability of the octaloop are important determinants for viral RNA replication and virus reproduction. Together, these data show that stem-loop A plays an important role in virus replication. The high degree of sequence flexibility and the lack of selective pressure on the octaloop argue against a role in sequence specific RNA-protein or RNA-RNA interactions in which octaloop nucleotides are involved
