58 research outputs found

    Transient Nature of Long-Term Nonprogression and Broad Virus-Specific Proliferative T-Cell Responses with Sustained Thymic Output in HIV-1 Controllers

    Get PDF
    HIV-1(+) individuals who, without therapy, conserve cellular anti-HIV-1 responses, present with high, stable CD4(+) T-cell numbers, and control viral replication, facilitate analysis of atypical viro-immunopathology. In the absence of universal definition, immune function in such HIV controllers remains an indication of non-progression.CD4 T-cell responses to a number of HIV-1 proteins and peptide pools were assessed by IFN-gamma ELISpot and lymphoproliferative assays in HIV controllers and chronic progressors. Thymic output was assessed by sjTRECs levels. Follow-up of 41 HIV-1(+) individuals originally identified as "Long-term non-progressors" in 1996 according to clinical criteria, and longitudinal analysis of two HIV controllers over 22 years, was also performed. HIV controllers exhibited substantial IFN-gamma producing and proliferative HIV-1-specific CD4 T-cell responses to both recombinant proteins and peptide pools of Tat, Rev, Nef, Gag and Env, demonstrating functional processing and presentation. Conversely, HIV-specific T-cell responses were limited to IFN-gamma production in chronic progressors. Additionally, thymic output was approximately 19 fold higher in HIV controllers than in age-matched chronic progressors. Follow-up of 41 HIV-1(+) patients identified as LTNP in 1996 revealed the transitory characteristics of this status. IFN-gamma production and proliferative T-cell function also declines in 2 HIV controllers over 22 years.Although increased thymic output and anti-HIV-1 T-cell responses are observed in HIV controllers compared to chronic progressors, the nature of nonprogressor/controller status appears to be transitory

    Non-affirmative Theory of Education as a Foundation for Curriculum Studies, Didaktik and Educational Leadership

    Get PDF
    This chapter presents non-affirmative theory of education as the foundation for a new research program in education, allowing us to bridge educational leadership, curriculum studies and Didaktik. We demonstrate the strengths of this framework by analyzing literature from educational leadership and curriculum theory/didaktik. In contrast to both socialization-oriented explanations locating curriculum and leadership within existing society, and transformation-oriented models viewing education as revolutionary or super-ordinate to society, non-affirmative theory explains the relation between education and politics, economy and culture, respectively, as non-hierarchical. Here critical deliberation and discursive practices mediate between politics, culture, economy and education, driven by individual agency in historically developed cultural and societal institutions. While transformative and socialization models typically result in instrumental notions of leadership and teaching, non-affirmative education theory, previously developed within German and Nordic education, instead views leadership and teaching as relational and hermeneutic, drawing on ontological core concepts of modern education: recognition; summoning to self-activity and Bildsamkeit. Understanding educational leadership, school development and teaching then requires a comparative multi-level approach informed by discursive institutionalism and organization theory, in addition to theorizing leadership and teaching as cultural-historical and critical-hermeneutic activity. Globalisation and contemporary challenges to deliberative democracy also call for rethinking modern nation-state based theorizing of education in a cosmopolitan light. Non-affirmative education theory allows us to understand and promote recognition based democratic citizenship (political, economical and cultural) that respects cultural, ethical and epistemological variations in a globopolitan era. We hope an American-European-Asian comparative dialogue is enhanced by theorizing education with a non-affirmative approach

    A new synthesis of 1-Benzyl-1,2,3,4-tetrahydroisoquinoline

    No full text

    Large-Scale Synthesis of Colloidal Si Nanocrystals and Their Helium Plasma Processing into Spin-On, Carbon-Free Nanocrystalline Si Films

    No full text
    This paper describes a simple approach to the large-scale synthesis of colloidal Si nanocrystals and their processing into spin-on carbon-free nanocrystalline Si films. The synthesized silicon nanoparticles are capped with decene, dispersed in hexane, and deposited on silicon substrates. The deposited films are exposed to nonoxidizing room-temperature He plasma to remove the organic ligands without adversely affecting the silicon nanoparticles to form crack-free thin films. We further show that the reactive ion etching rate in these films is 1.87 times faster than that for single-crystalline Si, consistent with a simple geometric argument that accounts for the nanoscale roughness caused by the nanoparticle shape

    Building Materials from Colloidal Nanocrystal Assemblies: Molecular Control of Solid/Solid Interfaces in Nanostructured Tetragonal ZrO2

    No full text
    We here describe a bottom-up approach to control the composition of solid/solid interfaces in nanostructured materials, and we test its effectiveness on tetragonal ZrO2, an inorganic phase of great technological significance. Colloidal nanocrystals capped with trioctylphosphine oxide (TOPO) or oleic acid (OA) are deposited, and the organic fraction of the ligands is selectively etched with O-2 plasma. The interfaces in the resulting all-inorganic colloidal nanocrystal assemblies are either nearly bare (for OA-capped nanocrystals) or terminated with phosphate groups (for TOPO-capped nanocrystals) resulting from the reaction of phosphine oxide groups with plasma species. The chemical modification of the interfaces has extensive effects on the thermodynamics and kinetics of the material. Different growth kinetics indicate different rate limiting processes of growth (surface diffusion for the phosphate-terminated surfaces and dissolution for the "bare" surfaces). Phosphate termination led to a higher activation energy of growth, and a 3-fold reduction in interfacial energy, and facilitated significantly the conversion of the tetragonal phase into the monoclinic phase. Films devoid of residual ligands persisted in the tetragonal phase at temperatures as high as 900 degrees C for 24 h

    Calcination does not remove all carbon from colloidal nanocrystal assemblies

    No full text
    Removing organics from hybrid nanostructures is a crucial step in many bottom-up materials fabrication approaches. It is usually assumed that calcination is an effective solution to this problem, especially for thin films. This assumption has led to its application in thousands of papers. We here show that this general assumption is incorrect by using a relevant and highly controlled model system consisting of thin films of ligand-capped ZrO2 nanocrystals. After calcination at 800 degrees C for 12 h, while Raman spectroscopy fails to detect the ligands after calcination, elastic backscattering spectrometry characterization demonstrates that similar to 18% of the original carbon atoms are still present in the film. By comparison plasma processing successfully removes the ligands. Our growth kinetic analysis shows that the calcined materials have significantly different interfacial properties than the plasma-processed counterparts. Calcination is not a reliable strategy for the production of single-phase allinorganic materials from colloidal nanoparticles
    corecore