57 research outputs found

    Enzymatic processing of protein-based fibers

    Get PDF
    Wool and silk are major protein fiber materials used by the textile industry. Fiber protein structure-function relationships are briefly described here, and the major enzymatic processing routes for textiles and other novel applications are deeply reviewed. Fiber biomodification is described here with various classes of enzymes such as protease, transglutaminase, tyrosinase, and laccase. It is expected that the reader will get a perspective on the research done as a basis for new applications in other areas such as cosmetics and pharma.This work was financially supported by the National Natural Science Foundation of China (21274055,51373071, 31201134 and 31470509), the Program for New Century Excellent Talents in University (NCET-12-0883), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1135), the Jiangsu Provincial Natural Science Foundation of China (BK2012112), and the Fundamental Research Funds for the Central Universities (JUSRP51312B)

    Keratins extracted from Merino wool and Brown Alpaca fibres as potential fillers for PLLA-based biocomposites

    Full text link
    This paper reports on the promising perspectives of using keratins extracted by sulphitolysis reaction from Merino wool (KM) and Brown Alpaca fibres (KA) in poly (l-lactide) (PLLA)-based biomaterials. Both types of keratin were dispersed in chloroform (CHCl3) and tetrahydrofuran (THF), and optimisation of dispersion methods and parameters using the two selected solvents was considered. The extraction yield, as well as supermolecular structures, morphology and thermal behaviour of the two proteins before and after the regeneration in CHCl3 was investigated. The results indicated that the supermolecular structures and thermal behaviour of the two proteins were affected by the interaction with CHCl3, producing decrease of the amount of α-helix structures in KM and an increase for KA, a slight decrease of β-sheet structures and a reduced thermal stability of α-crystallites for both keratins. Biocomposite films based on PLLA polymer matrix and two different contents of Merino wool and Brown Alpaca keratins (1 % and 5 % wt) were successfully developed by solvent casting in chloroform and the resulting morphologies after incorporation of different keratins (as a function of content and source) give evidence of different surface topographies, with a random distribution of keratin in flask-like structure. PLLA/5KA and PLLA/5KM samples with 1 % and 5 % wt of keratins show a specific pore-like surface microstructure, induced by solvent evaporation.Peer Reviewe

    Observations of Lyα\alpha Emitters at High Redshift

    Full text link
    In this series of lectures, I review our observational understanding of high-zz Lyα\alpha emitters (LAEs) and relevant scientific topics. Since the discovery of LAEs in the late 1990s, more than ten (one) thousand(s) of LAEs have been identified photometrically (spectroscopically) at z0z\sim 0 to z10z\sim 10. These large samples of LAEs are useful to address two major astrophysical issues, galaxy formation and cosmic reionization. Statistical studies have revealed the general picture of LAEs' physical properties: young stellar populations, remarkable luminosity function evolutions, compact morphologies, highly ionized inter-stellar media (ISM) with low metal/dust contents, low masses of dark-matter halos. Typical LAEs represent low-mass high-zz galaxies, high-zz analogs of dwarf galaxies, some of which are thought to be candidates of population III galaxies. These observational studies have also pinpointed rare bright Lyα\alpha sources extended over 10100\sim 10-100 kpc, dubbed Lyα\alpha blobs, whose physical origins are under debate. LAEs are used as probes of cosmic reionization history through the Lyα\alpha damping wing absorption given by the neutral hydrogen of the inter-galactic medium (IGM), which complement the cosmic microwave background radiation and 21cm observations. The low-mass and highly-ionized population of LAEs can be major sources of cosmic reionization. The budget of ionizing photons for cosmic reionization has been constrained, although there remain large observational uncertainties in the parameters. Beyond galaxy formation and cosmic reionization, several new usages of LAEs for science frontiers have been suggested such as the distribution of {\sc Hi} gas in the circum-galactic medium and filaments of large-scale structures. On-going programs and future telescope projects, such as JWST, ELTs, and SKA, will push the horizons of the science frontiers.Comment: Lecture notes for `Lyman-alpha as an Astrophysical and Cosmological Tool', Saas-Fee Advanced Course 46. Verhamme, A., North, P., Cantalupo, S., & Atek, H. (eds.) --- 147 pages, 103 figures. Abstract abridged. Link to the lecture program including the video recording and ppt files : https://obswww.unige.ch/Courses/saas-fee-2016/program.cg
    corecore