781 research outputs found
GeNN: a code generation framework for accelerated brain simulations
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ.
GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials,
Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/
The epiphyseal scar: changing perceptions in relation to skeletal age estimation.
BACKGROUND: It is imperative that all methods applied in skeletal age estimation and the criteria on which they are based have a strong evidential basis. The relationship between the persistence of epiphyseal scars and chronological age, however, has remained largely untested. AIMS: To assess the relationships between the level of persistence of the epiphyseal scar and chronological age, biological sex and side of the body in relation to the interpretation of epiphyseal scars in methods of skeletal age estimation. SUBJECTS AND METHODS: A sample of radiographic images was obtained from the Tayside NHS Trust, Ninewells Hospital, Dundee, UK. This included images of four anatomical regions from living female and male individuals aged between 20-50 years. RESULTS: Some remnant of an epiphyseal scar was found in 78-99% of individuals examined in this study. The level of persistence of epiphyseal scars was also found to vary between anatomical regions. CONCLUSION: The overall relationship between chronological age and the level of persistence or obliteration of the epiphyseal scar was found to be of insufficient strength to support a causative link. It is, therefore, necessary that caution is employed in their interpretation in relation to skeletal age estimation practices
A Common Variant Associated with Dyslexia Reduces Expression of the KIAA0319 Gene
Numerous genetic association studies have implicated the KIAA0319 gene on human chromosome 6p22 in dyslexia susceptibility. The causative variant(s) remains unknown but may modulate gene expression, given that (1) a dyslexia-associated haplotype has been implicated in the reduced expression of KIAA0319, and (2) the strongest association has been found for the region spanning exon 1 of KIAA0319. Here, we test the hypothesis that variant(s) responsible for reduced KIAA0319 expression resides on the risk haplotype close to the gene's transcription start site. We identified seven single-nucleotide polymorphisms on the risk haplotype immediately upstream of KIAA0319 and determined that three of these are strongly associated with multiple reading-related traits. Using luciferase-expressing constructs containing the KIAA0319 upstream region, we characterized the minimal promoter and additional putative transcriptional regulator regions. This revealed that the minor allele of rs9461045, which shows the strongest association with dyslexia in our sample (max p-value = 0.0001), confers reduced luciferase expression in both neuronal and non-neuronal cell lines. Additionally, we found that the presence of this rs9461045 dyslexia-associated allele creates a nuclear protein-binding site, likely for the transcriptional silencer OCT-1. Knocking down OCT-1 expression in the neuronal cell line SHSY5Y using an siRNA restores KIAA0319 expression from the risk haplotype to nearly that seen from the non-risk haplotype. Our study thus pinpoints a common variant as altering the function of a dyslexia candidate gene and provides an illustrative example of the strategic approach needed to dissect the molecular basis of complex genetic traits
The persistence of epiphyseal scars in the distal radius in adult individuals
The use of radiographic imaging in the estimation of chronological age facilitates the analysis of structures not visible on gross morphological inspection. Following the completion of epiphyseal fusion, a thin radio-opaque band, the epiphyseal scar, may be observed at the locus of the former growth plate. The obliteration of this feature has previously been interpreted as the final stage of skeletal maturation and consequently has been included as a criterion in several methods of age estimation, particularly from the distal radius. Due to the recommendations relating to age estimation in living individuals, accurate assessment of age from the distal radius is of great importance in human identification; however, the validity of the interpretation of the obliteration of the epiphyseal scar as an age-related process has not been tested. A study was undertaken to assess the persistence of epiphyseal scars in adults between 20 and 50 years of age through the assessment of 616 radiographs of left and right distal radii from a cross-sectional population. This study found that 86 % of females and 78 % of males retained some remnant of the epiphyseal scar in the distal radius. The relationships between chronological age, biological sex and the persistence of the epiphyseal scar were not statistically significant. The findings of this study indicate that the epiphyseal scars may persist in adult individuals until at least 50 years of age. No maximum age should therefore be applied to the persistence of an epiphyseal scar in the distal radius
Efficiency of primary saliva secretion: an analysis of parameter dependence in dynamic single-cell and acinus models, with application to aquaporin knockout studies
Secretion from the salivary glands is driven by osmosis following the establishment of osmotic gradients between the lumen, the cell and the interstitium by active ion transport. We consider a dynamic model of osmotically driven primary saliva secretion and use singular perturbation approaches and scaling assumptions to reduce the model. Our analysis shows that isosmotic secretion is the most efficient secretion regime and that this holds for single isolated cells and for multiple cells assembled into an acinus. For typical parameter variations, we rule out any significant synergistic effect on total water secretion of an acinar arrangement of cells about a single shared lumen. Conditions for the attainment of isosmotic secretion are considered, and we derive an expression for how the concentration gradient between the interstitium and the lumen scales with water- and chloride-transport parameters. Aquaporin knockout studies are interpreted in the context of our analysis and further investigated using simulations of transport efficiency with different membrane water permeabilities. We conclude that recent claims that aquaporin knockout studies can be interpreted as evidence against a simple osmotic mechanism are not supported by our work. Many of the results that we obtain are independent of specific transporter details, and our analysis can be easily extended to apply to models that use other proposed ionic mechanisms of saliva secretion
A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition
Memories are believed to be represented in the synaptic pathways of vastly interconnected networks of neurons. The
plasticity of synapses, that is, their strengthening and weakening depending on neuronal activity, is believed to be the basis
of learning and establishing memories. An increasing number of studies indicate that endocannabinoids have a widespread
action on brain function through modulation of synap–tic transmission and plasticity. Recent experimental studies have
characterised the role of endocannabinoids in mediating both short- and long-term synaptic plasticity in various brain
regions including the hippocampus, a brain region strongly associated with cognitive functions, such as learning and
memory. Here, we present a biophysically plausible model of cannabinoid retrograde signalling at the synaptic level and
investigate how this signalling mediates depolarisation induced suppression of inhibition (DSI), a prominent form of shortterm
synaptic depression in inhibitory transmission in hippocampus. The model successfully captures many of the key
characteristics of DSI in the hippocampus, as observed experimentally, with a minimal yet sufficient mathematical
description of the major signalling molecules and cascades involved. More specifically, this model serves as a framework to
test hypotheses on the factors determining the variability of DSI and investigate under which conditions it can be evoked.
The model reveals the frequency and duration bands in which the post-synaptic cell can be sufficiently stimulated to elicit
DSI. Moreover, the model provides key insights on how the state of the inhibitory cell modulates DSI according to its firing
rate and relative timing to the post-synaptic activation. Thus, it provides concrete suggestions to further investigate
experimentally how DSI modulates and is modulated by neuronal activity in the brain. Importantly, this model serves as a
stepping stone for future deciphering of the role of endocannabinoids in synaptic transmission as a feedback mechanism
both at synaptic and network level
- …
