9,686 research outputs found
Recommended from our members
Diazotrophs Show Signs of Restoration in Amazon Rain Forest Soils with Ecosystem Rehabilitation.
Biological nitrogen fixation can be an important source of nitrogen in tropical forests that serve as a major CO2 sink. Extensive deforestation of the Amazon is known to influence microbial communities and the biogeochemical cycles they mediate. However, it is unknown how diazotrophs (nitrogen-fixing microorganisms) respond to deforestation and subsequent ecosystem conversion to agriculture, as well as whether they can recover in secondary forests that are established after agriculture is abandoned. To address these knowledge gaps, we combined a spatially explicit sampling approach with high-throughput sequencing of nifH genes. The main objectives were to assess the functional distance decay relationship of the diazotrophic bacterial community in a tropical forest ecosystem and to quantify the roles of various factors that drive the observed changes in the diazotrophic community structure. We observed an increase in local diazotrophic diversity (α-diversity) with a decrease in community turnover (β-diversity), associated with a shift in diazotrophic community structure as a result of the forest-to-pasture conversion. Both diazotrophic community turnover and structure showed signs of recovery in secondary forests. Changes in the diazotrophic community were primarily driven by the change in land use rather than differences in geochemical characteristics or geographic distances. The diazotroph communities in secondary forests resembled those in primary forests, suggesting that at least partial recovery of diazotrophs is possible following agricultural abandonment.IMPORTANCE The Amazon region is a major tropical forest region that is being deforested at an alarming rate to create space for cattle ranching and agriculture. Diazotrophs (nitrogen-fixing microorganisms) play an important role in supplying soil N for plant growth in tropical forests. It is unknown how diazotrophs respond to deforestation and whether they can recover in secondary forests that establish after agriculture is abandoned. Using high-throughput sequencing of nifH genes, we characterized the response of diazotrophs' β-diversity and identified major drivers of changes in diazotrophs from forest-to-pasture and pasture-to-secondary-forest conversions. Studying the impact of land use change on diazotrophs is important for a better understanding of the impact of deforestation on tropical forest ecosystem functioning, and our results on the potential recovery of diazotrophs in secondary forests imply the possible restoration of ecosystem functions in secondary forests
Parton Distributions for Event Generators
In this paper, conventional Global QCD analysis is generalized to produce
parton distributions optimized for use with event generators at the LHC. This
optimization is accomplished by combining the constraints due to existing
hard-scattering experimental data with those from anticipated cross sections
for key representative SM processes at LHC (by the best available theory) as
joint input to the global analyses. The PDFs obtained in these new type of
global analyses using matrix elements calculated in any given order will be
best suited to work with event generators of that order, for predictions at the
LHC. This is most useful for LO event generators at present. Results obtained
from a few candidate PDF sets (labeled as CT09MCS, CT09MC1 and CT09MC2) for LO
event generators produced in this way are compared with those from other
approaches.Comment: 35 pages, 19 figures, and 4 table
Culture shapes how we look at faces
Background: Face processing, amongst many basic visual skills, is thought to be invariant across all humans. From as early as 1965, studies of eye movements have consistently revealed a systematic triangular sequence of fixations over the eyes and the mouth, suggesting that faces elicit a universal, biologically-determined information extraction pattern. Methodology/Principal Findings: Here we monitored the eye movements of Western Caucasian and East Asian observers while they learned, recognized, and categorized by race Western Caucasian and East Asian faces. Western Caucasian observers reproduced a scattered triangular pattern of fixations for faces of both races and across tasks. Contrary to intuition, East Asian observers focused more on the central region of the face. Conclusions/Significance: These results demonstrate that face processing can no longer be considered as arising from a universal series of perceptual events. The strategy employed to extract visual information from faces differs across cultures
New Symmetries in Crystals and Handed Structures
For over a century, the structure of materials has been described by a
combination of rotations, rotation-inversions and translational symmetries. By
recognizing the reversal of static structural rotations between clockwise and
counterclockwise directions as a distinct symmetry operation, here we show that
there are many more structural symmetries than are currently recognized in
right- or left-handed handed helices, spirals, and in antidistorted structures
composed equally of rotations of both handedness. For example, though a helix
or spiral cannot possess conventional mirror or inversion symmetries, they can
possess them in combination with the rotation reversal symmetry. Similarly, we
show that many antidistorted perovskites possess twice the number of symmetry
elements as conventionally identified. These new symmetries predict new forms
for "roto" properties that relate to static rotations, such as rotoelectricity,
piezorotation, and rotomagnetism. They also enable symmetry-based search for
new phenomena, such as multiferroicity involving a coupling of spins, electric
polarization and static rotations. This work is relevant to structure-property
relationships in all material structures with static rotations such as
minerals, polymers, proteins, and engineered structures.Comment: 15 Pages, 4 figures, 3 Tables; Fig. 2b has error
Entropy flow in near-critical quantum circuits
Near-critical quantum circuits are ideal physical systems for asymptotically
large-scale quantum computers, because their low energy collective excitations
evolve reversibly, effectively isolated from the environment. The design of
reversible computers is constrained by the laws governing entropy flow within
the computer. In near-critical quantum circuits, entropy flows as a locally
conserved quantum current, obeying circuit laws analogous to the electric
circuit laws. The quantum entropy current is just the energy current divided by
the temperature. A quantum circuit made from a near-critical system (of
conventional type) is described by a relativistic 1+1 dimensional relativistic
quantum field theory on the circuit. The universal properties of the
energy-momentum tensor constrain the entropy flow characteristics of the
circuit components: the entropic conductivity of the quantum wires and the
entropic admittance of the quantum circuit junctions. For example,
near-critical quantum wires are always resistanceless inductors for entropy. A
universal formula is derived for the entropic conductivity:
\sigma_S(\omega)=iv^{2}S/\omega T, where \omega is the frequency, T the
temperature, S the equilibrium entropy density and v the velocity of `light'.
The thermal conductivity is Real(T\sigma_S(\omega))=\pi v^{2}S\delta(\omega).
The thermal Drude weight is, universally, v^{2}S. This gives a way to measure
the entropy density directly.Comment: 2005 paper published 2017 in Kadanoff memorial issue of J Stat Phys
with revisions for clarity following referee's suggestions, arguments and
results unchanged, cross-posting now to quant-ph, 27 page
The Structure of the Non-SUSY Baryonic Branch of Klebanov-Strassler
We study the two-dimensional space of supergravity solutions corresponding to
non-supersymmetric deformations of the baryonic branch of Klebanov-Strassler.
By combining analytical methods with a numerical survey of the parameter space,
we find that this solution space includes as limits the softly-broken N=1
solutions of Gubser et al. and those of Dymarsky and Kuperstein. We also
identify a one-dimensional family of solutions corresponding to a natural
non-supersymmetric generalisation of Klebanov-Strassler, and one corresponding
to the limit in which supersymmetry is completely absent, even in the far UV.
For almost all of the parameter space we find indications that much of the
structure of the supersymmetric baryonic branch survives.Comment: 29 pages plus appendices, 11 figure
Scallop swimming kinematics and muscle performance: modelling the effects of "within-animal" variation in temperature sensitivity
Escape behaviour was investigated in Queen scallops (Aequipecten opercularis) acclimated to 5, 10 or 15 degrees C and tested at their acclimation temperature. Scallops are active molluscs, able to escape from predators by jet-propelled swimming using a striated muscle working in opposition to an elastic hinge ligament. The first cycle of the escape response was recorded using high-speed video ( 250 Hz) and whole-animal velocity and acceleration determined. Muscle shortening velocity, force and power output were calculated using measurements of valve movement and jet area, and a simple biomechanical model. The average shortening speed of the adductor muscle had a Q(10) of 2.04, significantly reducing the duration of the jetting phase of the cycle with increased temperature. Muscle lengthening velocity and the overall duration of the clap cycle were changed little over the range 5 - 15 degrees C, as these parameters were controlled by the relatively temperature-insensitive, hinge ligament. Improvements in the average power output of the adductor muscle over the first clap cycle ( 222 vs. 139 W kg(-1) wet mass at 15 and 5 degrees C respectively) were not translated into proportional increases in overall swimming velocity, which was only 32% higher at 15 degrees C ( 0.37m s(-1)) than 5 degrees C (0.28 m s(-1))
Scalar Three-point Functions in a CDL Background
Motivated by the FRW-CFT proposal by Freivogel, Sekino, Susskind and Yeh, we
compute the three-point function of a scalar field in a Coleman-De Luccia
instanton background. We first compute the three-point function of the scalar
field making only very mild assumptions about the scalar potential and the
instanton background. We obtain the three-point function for points in the FRW
patch of the CDL instanton and take two interesting limits; the limit where the
three points are near the boundary of the hyperbolic slices of the FRW patch,
and the limit where the three points lie on the past lightcone of the FRW
patch. We expand the past lightcone three-point function in spherical
harmonics. We show that the near boundary limit expansion of the three-point
function of a massless scalar field exhibits conformal structure compatible
with FRW-CFT when the FRW patch is flat. We also compute the three-point
function when the scalar is massive, and explain the obstacles to generalizing
the conjectured field-operator correspondence of massless fields to massive
fields.Comment: 42 pages + appendices, 10 figures; v2, v3: minor correction
Holographic duals of SQCD models in low dimensions
We obtain gravity duals to supersymmetric gauge theories in two and three
spacetime dimensions with unquenched flavor. The supergravity solutions are
generated by a set of color branes wrapping a compact cycle in a Calabi-Yau
threefold, together with another set of flavor branes extended along the
directions orthogonal to the cycle wrapped by the color branes. We construct
supergravity backgrounds which include the backreaction induced by a smeared
set of flavor branes, which act as delocalized dynamical sources of the
different supergravity fields.Comment: 42 pages, 5 figures;v2: typos correcte
- …
