1,771 research outputs found
Flight of the dragonflies and damselflies
This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes
Identification of a gene for an ancient cytokine, interleukin 15-like, in mammals; interleukins 2 and 15 co-evolved with this third family member, all sharing binding motifs for IL-15Rα
Interleukins 2 and 15 (IL-2 and IL-15) are highly differentiated but related cytokines with overlapping, yet also distinct functions, and established benefits for medical drug use. The present study identified a gene for an ancient third IL-2/15 family member in reptiles and mammals, interleukin 15-like (IL-15L), which hitherto was only reported in fish. IL-15L genes with intact open reading frames (ORFs) and evidence of transcription, and a recent past of purifying selection, were found for cattle, horse, sheep, pig and rabbit. In human and mouse the IL-15L ORF is incapacitated. Although deduced IL-15L proteins share only ~21 % overall amino acid identity with IL-15, they share many of the IL-15 residues important for binding to receptor chain IL-15Rα, and recombinant bovine IL-15L was shown to interact with IL-15Rα indeed. Comparison of sequence motifs indicates that capacity for binding IL-15Rα is an ancestral characteristic of the IL-2/15/15L family, in accordance with a recent study which showed that in fish both IL-2 and IL-15 can bind IL-15Rα. Evidence reveals that the species lineage leading to mammals started out with three similar cytokines IL-2, IL-15 and IL-15L, and that later in evolution (1) IL-2 and IL-2Rα receptor chain acquired a new and specific binding mode and (2) IL-15L was lost in several but not all groups of mammals. The present study forms an important step forward in understanding this potent family of cytokines, and may help to improve future strategies for their application in veterinarian and human medicine
Challenges in monitoring and managing engineered slopes in a changing climate
Geotechnical asset owners need to know which parts of their asset network are vulnerable to climate
change induced failure in order to optimise future investment. Protecting these vulnerable slopes requires monitoring
systems capable of identifying and alerting to asset operators changes in the internal conditions that precede failure.
Current monitoring systems are heavily reliant on point sensors which can be difficult to interpret across slope scale.
This paper presents challenges to producing such a system and research being carried out to address some of these
using electrical resistance tomography (ERT). Experimental results show that whilst it is possible to measure soil
water content indirectly via resistivity the relationship between resistivity and water content will change over time for
a given slope. If geotechnical parameters such as pore water pressure are to be estimated using this method then ERT
systems will require integrating with more conventional geotechnical instrumentation to ensure correct representative
information is provided. The paper also presents examples of how such data can be processed and communicated to
asset owners for the purposes of asset management
Subtidal macrozoobenthos communities from northern Chile during and post El Niño 1997–1998
Despite a large amount of climatic and oceanographic information dealing with the recurring climate phenomenon El Niño (EN) and its well known impact on diversity of marine benthic communities, most published data are rather descriptive and consequently our understanding of the underlying mechanisms and processes that drive community structure during EN are still very scarce. In this study, we address two questions on the effects of EN on macrozoobenthic communities: (1) how does EN affect species diversity of the communities in northern Chile? and (2) is EN a phenomenon that restarts community assembling processes by affecting species interactions in northern Chile? To answer these questions, we compared species diversity and co-occurrence patterns of soft-bottoms macrozoobenthos communities from the continental shelf off northern Chile during (March 1998) and after (September 1998) the strong EN event 1997–1998. The methods used varied from species diversity and species co-occurrence analyses to multivariate ordination methods.
Our results indicate that EN positively affects diversity of macrozoobenthos communities in the study area, increasing the species richness and diversity and decreasing the species dominance. EN represents a strong disturbance that affects species interactions that rule the species assembling processes in shallow-water, sea-bottom environments
The Formation and Evolution of the First Massive Black Holes
The first massive astrophysical black holes likely formed at high redshifts
(z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations.
These black holes grow by mergers and gas accretion, evolve into the population
of bright quasars observed at lower redshifts, and eventually leave the
supermassive black hole remnants that are ubiquitous at the centers of galaxies
in the nearby universe. The astrophysical processes responsible for the
formation of the earliest seed black holes are poorly understood. The purpose
of this review is threefold: (1) to describe theoretical expectations for the
formation and growth of the earliest black holes within the general paradigm of
hierarchical cold dark matter cosmologies, (2) to summarize several relevant
recent observations that have implications for the formation of the earliest
black holes, and (3) to look into the future and assess the power of
forthcoming observations to probe the physics of the first active galactic
nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant
Universe", Ed. A. J. Barger, Kluwer Academic Publisher
How functional programming mattered
In 1989 when functional programming was still considered a niche topic, Hughes wrote a visionary paper arguing convincingly ‘why functional programming matters’. More than two decades have passed. Has functional programming really mattered? Our answer is a resounding ‘Yes!’. Functional programming is now at the forefront of a new generation of programming technologies, and enjoying increasing popularity and influence. In this paper, we review the impact of functional programming, focusing on how it has changed the way we may construct programs, the way we may verify programs, and fundamentally the way we may think about programs
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
Immunohistochemical, morphological and ultrastructural resemblance between dendritic cells and folliculo-stellate cells in normal human and rat anterior pituitaries
Immunolabeling of cryo-sections of human anterior pituitaries obtained at autopsy, and of cryo-sections of freshly prepared rat anterior pituitaries, with a panel of monoclonal antibodies against markers of the monocyte/dendritic cell/macrophage lineage, reveals in both species a characteristic pattern of immunopositive cells, among which many cells with dendritic phenotype are found. Cells characterized by marker expression of MHC-class II determinants and a dendritic morphology are present in both human and rat anterior pituitary. Markers characteristic of dendritic cells such as the L25 antigen and the OX62 antigen were present in anterior pituitaries from human and rat respectively. The population of MHC-class II expressing dendritic cells of the rat anterior pituitary is compared at the ultrastructural level with the folliculo-stellate cell population, which cell type has been previously characterized by its distinctive ultrastructure and immunopositivity for the S100 protein. Using immune-electron microscopy of rat anterior pituitaries fixed with periodate-lysine-paraformaldehyde, we were able to distinguish non-granulated cells expressing MHC-class II determinants, whereas no MHC-class II expression was found in the granulated endocrine cells. Using double immunolabeling of cryo-sections of these rat AP with 25 nm and 15 nm gold labels, we demonstrated an overlap between the populations of MHC-class II-expressing and S100 protein-expressing cells. Furthermore, MHC-class II-expressing and S100-positive cells showed ultrastructural characteristics that have been previously ascribed to folliculo-stellate cells. At the light microscopical level in the rat AP, a proportion of 10 to 20% of the S100-positive cells was found immunopositive for the MHC-class II marker OX6. In the hu
The Formation of the First Massive Black Holes
Supermassive black holes (SMBHs) are common in local galactic nuclei, and
SMBHs as massive as several billion solar masses already exist at redshift z=6.
These earliest SMBHs may grow by the combination of radiation-pressure-limited
accretion and mergers of stellar-mass seed BHs, left behind by the first
generation of metal-free stars, or may be formed by more rapid direct collapse
of gas in rare special environments where dense gas can accumulate without
first fragmenting into stars. This chapter offers a review of these two
competing scenarios, as well as some more exotic alternative ideas. It also
briefly discusses how the different models may be distinguished in the future
by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First
Galaxies - Theoretical Predictions and Observational Clues", Springer
Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B.
Mobasher, in pres
Continuation for thin film hydrodynamics and related scalar problems
This chapter illustrates how to apply continuation techniques in the analysis
of a particular class of nonlinear kinetic equations that describe the time
evolution through transport equations for a single scalar field like a
densities or interface profiles of various types. We first systematically
introduce these equations as gradient dynamics combining mass-conserving and
nonmass-conserving fluxes followed by a discussion of nonvariational amendmends
and a brief introduction to their analysis by numerical continuation. The
approach is first applied to a number of common examples of variational
equations, namely, Allen-Cahn- and Cahn-Hilliard-type equations including
certain thin-film equations for partially wetting liquids on homogeneous and
heterogeneous substrates as well as Swift-Hohenberg and Phase-Field-Crystal
equations. Second we consider nonvariational examples as the
Kuramoto-Sivashinsky equation, convective Allen-Cahn and Cahn-Hilliard
equations and thin-film equations describing stationary sliding drops and a
transversal front instability in a dip-coating. Through the different examples
we illustrate how to employ the numerical tools provided by the packages
auto07p and pde2path to determine steady, stationary and time-periodic
solutions in one and two dimensions and the resulting bifurcation diagrams. The
incorporation of boundary conditions and integral side conditions is also
discussed as well as problem-specific implementation issues
- …
