22 research outputs found
Increased Serum and Musculotendinous Fibrogenic Proteins following Persistent Low-Grade Inflammation in a Rat Model of Long-Term Upper Extremity Overuse.
We examined the relationship between grip strength declines and muscle-tendon responses induced by long-term performance of a high-repetition, low-force (HRLF) reaching task in rats. We hypothesized that grip strength declines would correlate with inflammation, fibrosis and degradation in flexor digitorum muscles and tendons. Grip strength declined after training, and further in weeks 18 and 24, in reach limbs of HRLF rats. Flexor digitorum tissues of reach limbs showed low-grade increases in inflammatory cytokines: IL-1β after training and in week 18, IL-1α in week 18, TNF-α and IL-6 after training and in week 24, and IL-10 in week 24, with greater increases in tendons than muscles. Similar cytokine increases were detected in serum with HRLF: IL-1α and IL-10 in week 18, and TNF-α and IL-6 in week 24. Grip strength correlated inversely with IL-6 in muscles, tendons and serum, and TNF-α in muscles and serum. Four fibrogenic proteins, TGFB1, CTGF, PDGFab and PDGFbb, and hydroxyproline, a marker of collagen synthesis, increased in serum in HRLF weeks 18 or 24, concomitant with epitendon thickening, increased muscle and tendon TGFB1 and CTGF. A collagenolytic gelatinase, MMP2, increased by week 18 in serum, tendons and muscles of HRLF rats. Grip strength correlated inversely with TGFB1 in muscles, tendons and serum; with CTGF-immunoreactive fibroblasts in tendons; and with MMP2 in tendons and serum. Thus, motor declines correlated with low-grade systemic and musculotendinous inflammation throughout task performance, and increased fibrogenic and degradative proteins with prolonged task performance. Serum TNF-α, IL-6, TGFB1, CTGF and MMP2 may serve as serum biomarkers of work-related musculoskeletal disorders, although further studies in humans are needed
Analysis of cytokine profile and growth factors in platelet-rich plasma obtained by open systems and commercial columns
ABSTRACT Objective: To evaluate growth factors and cytokines in samples of platelet-rich plasma obtained by three different centrifugation methods. Methods: Peripheral blood of six individuals with no hematological diseases, aged 18 to 68 years, was drawn to obtain platelet-rich plasma, using the open method and commercial columns by Medtronic and Biomet. The products obtained with the different types of centrifugation were submitted to laboratory analysis, including pro-inflammatory cytokines and chemokines by flow cytometry assays, the concentration of fibroblast growth factors-2 (FGF-2) and transforming growth factor-beta1 (TGF-β1). Results: The diverse separation methods generated systematically different profiles regarding number of platelets and leukocytes. The Medtronic system yielded a product with the highest concentration of platelets, and the open method, with the lowest concentration of platelets. The results of cytokine analysis showed that the different types of centrifugation yielded products with high concentrations of interleukin 8, interleukin 1β. The open system resulted in a product with high levels of interleukin 6. Other cytokines and chemokines measured were similar between systems. The product obtained with the open method showed higher levels of TGF-β1 in relation to other systems and low FGF-2 levels. Conclusion: The formed elements, growth factors and cytokines in samples of platelet-rich plasma varied according to the centrifugation technique used
Aging enhances serum cytokine response but not task-induced grip strength declines in a rat model of work-related musculoskeletal disorders
<p>Abstract</p> <p>Background</p> <p>We previously reported early tissue injury, increased serum and tissue inflammatory cytokines and decreased grip in young rats performing a moderate demand repetitive task. The tissue cytokine response was transient, the serum response and decreased grip were still evident by 8 weeks. Thus, here, we examined their levels at 12 weeks in young rats. Since aging is known to enhance serum cytokine levels, we also examined aged rats.</p> <p>Methods</p> <p>Aged and young rats, 14 mo and 2.5 mo of age at onset, respectfully, were trained 15 min/day for 4 weeks, and then performed a high repetition, low force (HRLF) reaching and grasping task for 2 hours/day, for 12 weeks. Serum was assayed for 6 cytokines: IL-1alpha, IL-6, IFN-gamma, TNF-alpha, MIP2, IL-10. Grip strength was assayed, since we have previously shown an inverse correlation between grip strength and serum inflammatory cytokines. Results were compared to naïve (grip), and normal, food-restricted and trained-only controls.</p> <p>Results</p> <p>Serum cytokines were higher overall in aged than young rats, with increases in IL-1alpha, IFN-gamma and IL-6 in aged Trained and 12-week HRLF rats, compared to young Trained and HRLF rats (p < 0.05 and p < 0.001, respectively, each). IL-6 was also increased in aged 12-week HRLF versus aged normal controls (p < 0.05). Serum IFN-gamma and MIP2 levels were also increased in young 6-week HRLF rats, but no cytokines were above baseline levels in young 12-week HRLF rats. Grip strength declined in both young and aged 12-week HRLF rats, compared to naïve and normal controls (p < 0.05 each), but these declines correlated only with IL-6 levels in aged rats (r = -0.39).</p> <p>Conclusion</p> <p>Aging enhanced a serum cytokine response in general, a response that was even greater with repetitive task performance. Grip strength was adversely affected by task performance in both age groups, but was apparently influenced by factors other than serum cytokine levels in young rats.</p
Deciphering the pathogenesis of tendinopathy: a three-stages process
Our understanding of the pathogenesis of "tendinopathy" is based on fragmented evidences like pieces of a jigsaw puzzle. We propose a "failed healing theory" to knit these fragments together, which can explain previous observations. We also propose that albeit "overuse injury" and other insidious "micro trauma" may well be primary triggers of the process, "tendinopathy" is not an "overuse injury" per se. The typical clinical, histological and biochemical presentation relates to a localized chronic pain condition which may lead to tendon rupture, the latter attributed to mechanical weakness. Characterization of pathological "tendinotic" tissues revealed coexistence of collagenolytic injuries and an active healing process, focal hypervascularity and tissue metaplasia. These observations suggest a failed healing process as response to a triggering injury. The pathogenesis of tendinopathy can be described as a three stage process: injury, failed healing and clinical presentation. It is likely that some of these "initial injuries" heal well and we speculate that predisposing intrinsic or extrinsic factors may be involved. The injury stage involves a progressive collagenolytic tendon injury. The failed healing stage mainly refers to prolonged activation and failed resolution of the normal healing process. Finally, the matrix disturbances, increased focal vascularity and abnormal cytokine profiles contribute to the clinical presentations of chronic tendon pain or rupture. With this integrative pathogenesis theory, we can relate the known manifestations of tendinopathy and point to the "missing links". This model may guide future research on tendinopathy, until we could ultimately decipher the complete pathogenesis process and provide better treatments
Tendinopathy: Update on Pathophysiology
Tendinopathy has become the accepted term to describe a spectrum of changes that occur in-damaged and/or diseased tendons. Over the past 2 decades, there have been new insights into tendon pathophysiology of relevance to clinicians, including (1) better characterization of the overuse injury process and the resultant structural and functional disruption in chronically painful tendons, (2) improved understanding of the pathomechanics associated with chronic tendon injury, and (3) greater knowledge about the influence of lifestyle factors and drugs on tendon pathology. The implications of these new insights are discussed.</p
