15 research outputs found
Recommended from our members
Causes of the regional variability in observed sea level, sea surface temperature and ocean colour over the period 1993-2011
We analyse the regional variability in observed sea surface height (SSH), sea surface temperature (SST) and ocean colour (OC) from the ESA Climate Change Initiative (CCI) datasets over the period 1993-2011. The analysis focuses on the signature of the ocean large-scale climate fluctuations driven by the atmospheric forcing and do not address the mesoscale variability. We use the ECCO version 4 ocean reanalysis to unravel the role of ocean transport and surface buoyancy fluxes in the observed SSH, SST and OC variability. We show that the SSH regional variability is dominated by the steric effect (except at high latitude) and is mainly shaped by ocean heat transport divergences with some contributions from the surface heat fluxes forcing that can be significant regionally (confirming earlier results). This is in contrast with the SST regional variability, which is the result of the compensation of surface heat fluxes by ocean heat transport in the mixed layer and arises from small departures around this background balance. Bringing together the results of SSH and SST analyses, we show that SSH and SST bear some common variability. This is because both SSH and SST variability show significant contributions from the surface heat fluxes forcing. It is evidenced by the high correlation between SST and buoyancy forced SSH almost everywhere in the ocean except at high latitude. OC, which is determined by phytoplankton biomass, is governed by the availability of light and nutrients that essentially depend on climate fluctuations. For this reason OC show significant correlation with SST and SSH. We show that the correlation with SST display the same pattern as the correlation with SSH with a negative correlation in the tropics and subtropics and a positive correlation at high latitude. We discuss the reasons for this pattern
Infections by Helminth Parasites in "Puyenes", Galaxias maculatus (Galaxiidae, Salmoniformes), from Southern Argentina with special reference to Tylodelphys barilochensis (Digenea, Platyhelminthes)
Distribution of introduced and native fish in Patagonia (Argentina): patterns and changes in fish assemblages
The interaction between native fishes and salmonids introduced in Patagonia at the beginning of the 20th Century, developed at the same time as the environmental change. The phenomenon of global warming has led to the formulation of predictions in relation to changes in the distribution of species, in the latitudinal dimension, both at intralacustrine, or small streams levels. The aim of the present work includes three main objectives: a) to compose a general and updated picture of the latitudinal distribution range of native and alien fishes, b) to analyze the historical changes in the relative abundance of Percichthys trucha, Odontesthes sp., and salmonids in lakes and reservoirs, and c) to relate the diversity and relative abundance of native and salmonid fishes to the environmental variables of lakes and reservoirs. We analysed previous records and an ensemble of data about new locations along the northern border of the Patagonian Province. We compared current data about the relative abundance of native fishes and salmonids in lakes and reservoirs, with previous databases (1984–1987). All samplings considered were performed during spring-summer surveys and include relative abundance, as proportions of salmonids, P. trucha, and Odontesthes sp. For the first time, we found changes in fish assemblages from twenty years back up to the present: a significant decline in the relative abundances of salmonids and an increase of P. trucha. We studied the association between the diversity and relative abundance of native and salmonid fishes and the environmental variables of lakes and reservoirs using Canonical Correspondence Analysis. Relative abundance showed mainly geographical cues and the diversity relied largely on morphometric characteristics. Relative abundance and diversity seem to have a common point in the lake area, included into the PAR concept. Native abundance and alien diversity were negatively related with latitude. Greater native diversity was observed in lakes with high PAR compared with salmonids. Historical changes such as southward dispersion, relative abundance changes, and geographical patterns for relative abundance and diversity are basic concepts needed not only in future research but also in management design for Patagonian fish populations.Facultad de Ciencias Naturales y Muse
Variation of Antarctic circumpolar current and its intensification in relation to the southern annular mode detected in the time-variable gravity signals by GRACE satellite
Fish Assemblages in Pampean Streams (Buenos Aires, Argentina): Relationship to Abiotic and Anthropic Variables
Climatic reconstruction of two Pliocene floras from Mexico
The role that climate plays in influencing the physiognomy of modern and fossil plant communities is widely acknowledged and forms the basis for several palaeoclimate proxies. In this work, both univariate Leaf Margin Analysis and multivariate Climate/Leaf Analysis Multivariate Program (CLAMP) were used for the climatic reconstruction of two fossil localities of the Atotonilco El Grande Formation. Using the predominantly North American and Asian calibration data set PHYSG3BRC, supplemented with new African material, results from two sites, Los Baños (present position 20°18′18″N, 98°42′44.4″W) and Sanctorum (20°18′18.5″N and 98°46′52.2″W), indicate that during the Pliocene a mesothermal climate existed with mean annual temperatures between 12 and 22°C, with the most likely being approximately 15°C, and a mean annual temperature range of 21°C. A distinct seasonal variation in rainfall is evident with a mean annual relative humidity of 60–70%. Differences between the sites can be explained by differences in depositional regime and spatial heterogeneity in the predominantly Quercus-dominated woodland. The continuous subsequent uplift of the Sierra Madre Oriental, the resulting development of a rain shadow, and the eventual disappearance of a palaeolake appear to have caused a transition to the modern xerophytic shrub vegetation
