58 research outputs found
Does practicing hatha yoga satisfy recommendations for intensity of physical activity which improves and maintains health and cardiovascular fitness?
Background: Little is known about the metabolic and heart rate responses to a typical hatha yoga session. The purposes of this study were 1) to determine whether a typical yoga practice using various postures meets the current recommendations for levels of physical activity required to improve and maintain health and cardiovascular fitness; 2) to determine the reliability of metabolic costs of yoga across sessions; 3) to compare the metabolic costs of yoga practice to those of treadmill walking. Methods: In this observational study, 20 intermediate-to-advanced level yoga practitioners, age 31.4 ± 8.3 years, performed an exercise routine inside a human respiratory chamber (indirect calorimeter) while wearing heart rate monitors. The exercise routine consisted of 30 minutes of sitting, 56 minutes of beginner-level hatha yoga administered by video, and 10 minutes of treadmill walking at 3.2 and 4.8 kph each. Measures were mean oxygen consumption (VO2), heart rate (HR), percentage predicted maximal heart rate (%MHR), metabolic equivalents (METs), and energy expenditure (kcal). Seven subjects repeated the protocol so that measurement reliability could be established. Results: Mean values across the entire yoga session for VO2, HR, %MHR, METs, and energy/min were 0.6 L/kg/min; 93.2 beats/min; 49.4%; 2.5; and 3.2 kcal/min; respectively. Results of the ICCs (2,1) for mean values across the entire yoga session for kcal, METs, and %MHR were 0.979 and 0.973, and 0.865, respectively. Conclusion: Metabolic costs of yoga averaged across the entire session represent low levels of physical activity, are similar to walking on a treadmill at 3.2 kph, and do not meet recommendations for levels of physical activity for improving or maintaining health or cardiovascular fitness. Yoga practice incorporating sun salutation postures exceeding the minimum bout of 10 minutes may contribute some portion of sufficiently intense physical activity to improve cardio-respiratory fitness in unfit or sedentary individuals. The measurement of energy expenditure across yoga sessions is highly reliable
A 1-Year Study of Endurance Runners: Training, Laboratory Tests, and Field Tests
Purpose:
To compare critical speed (CS) measured from a single-visit field test of the distance–time relationship with the “traditional” treadmill time-to-exhaustion multivisit protocol.
Methods:
Ten male distance runners completed treadmill and field tests to calculate CS and the maximum distance performed above CS (D′). The field test involved 3 runs on a single visit to an outdoor athletics track over 3600, 2400, and 1200 m. Two field-test protocols were evaluated using either a 30-min recovery or a 60-min recovery between runs. The treadmill test involved runs to exhaustion at 100%, 105%, and 110% of velocity at VO2max, with 24 h recovery between runs.
Results:
There was no difference in CS measured with the treadmill and 30-min- and 60-minrecovery field tests (P .05). A typical error of the estimate of 0.14 m/s (95% confidence limits 0.09–0.26 m/s) was seen for CS and 88 m (95% confidence limits 60–169 m) for D′. A coefficient of variation of 0.4% (95% confidence limits: 0.3–0.8%) was found for repeat tests of CS and 13% (95% confidence limits 10–27%) for D′.
Conclusion:
The single-visit method provides a useful alternative for assessing CS in the field
Predição do desempenho aeróbio na canoagem a partir da aplicação de diferentes modelos matemáticos de velocidade crítica
Influência das variáveis do treinamento contra-resistência sobre o consumo de oxigênio em excesso após o exercício: uma revisão sistemática
Utilização do esforço percebido na determinação da velocidade crítica em corrida aquática
Estimativa do equivalente metabólico (MET) de um protocolo de exercícios físicos baseada na calorimetria indireta
High-intensity interval training and β-hydroxy-β-methylbutyric free acid improves aerobic power and metabolic thresholds
Urinary biomarkers of physical activity: candidates and clinical utility
Chronic physical inactivity is a major risk factor for a number of important lifestyle diseases, while inappropriate exposure to high physical demands is a risk factor for musculoskeletal injury and fatigue. Proteomic and metabolomic investigations of the physical activity continuum - extreme sedentariness to extremes in physical performance - offer increasing insight into the biological impacts of physical activity. Moreover, biomarkers, revealed in such studies, may have utility in the monitoring of metabolic and musculoskeletal health or recovery following injury. As a diagnostic matrix, urine is non-invasive to collect and it contains many biomolecules, which reflect both positive and negative adaptations to physical activity exposure. This review examines the utility and landscape of biomarkers of physical activity with particular reference to those found in urine
- …
