1,637 research outputs found
The Holographic Dual of 2+1 Dimensional QFTs with N=1 SUSY and Massive Fundamental Flavours
The Maldacena Nastase solution is generalised to include massive fundamental
matter through the addition of a flavour profile. This gives a holographic dual
to N=1 SYM-CS with massive fundamental matter with a singularity free IR. We
study this solution in some detail confirming confinement and asymptotic
freedom. A recently proposed solution generating technique is then applied
which results in a new type-IIA supergravity solution. In a certain limit the
geometry of this solution is asymptotically AdS_4X Y, where Y is the metric at
the base of the Bryant-Salamon G_2 cone, which has topology S^3XS^3.Comment: 31 pages plus appendices, 6 figures. v3: Typos corrected, version to
appear in JHE
An upper bound on the Kaon B-parameter and Re(epsilon_K)
New precise data in B physics and theoretical developments in K physics lead
us to reconsider the weak K^0-\bar{K}^0 transition from a large-N_c viewpoint,
N_c being the number of colors. In this framework, we infer an upper limit on
\hat{B}_K and the Kaon indirect CP violation.Comment: 11 pages, 4 figures. V2 : Minor corrections, final version accepted
for publication in JHE
The Structure of the Non-SUSY Baryonic Branch of Klebanov-Strassler
We study the two-dimensional space of supergravity solutions corresponding to
non-supersymmetric deformations of the baryonic branch of Klebanov-Strassler.
By combining analytical methods with a numerical survey of the parameter space,
we find that this solution space includes as limits the softly-broken N=1
solutions of Gubser et al. and those of Dymarsky and Kuperstein. We also
identify a one-dimensional family of solutions corresponding to a natural
non-supersymmetric generalisation of Klebanov-Strassler, and one corresponding
to the limit in which supersymmetry is completely absent, even in the far UV.
For almost all of the parameter space we find indications that much of the
structure of the supersymmetric baryonic branch survives.Comment: 29 pages plus appendices, 11 figure
E7(7) invariant Lagrangian of d=4 N=8 supergravity
We present an E7(7) invariant Lagrangian that leads to the equations of
motion of d=4 N=8 supergravity without using Lagrange multipliers. The
superinvariance of this new action and the closure of the supersymmetry algebra
are proved explicitly for the terms that differ from the Cremmer--Julia
formulation. Since the diffeomorphism symmetry is not realized in the standard
way on the vector fields, we switch to the Hamiltonian formulation in order to
prove the invariance of the E7(7) invariant action under general coordinate
transformations. We also construct the conserved E7(7)-Noether current of
maximal supergravity and we conclude with comments on the implications of this
manifest off-shell E7(7)-symmetry for quantizing d=4 N=8 supergravity, in
particular on the E7(7)-action on phase space.Comment: 45 pages, references adde
Towards multi-scale dynamics on the baryonic branch of Klebanov-Strassler
We construct explicitly a new class of backgrounds in type-IIB supergravity
which generalize the baryonic branch of Klebanov-Strassler. We apply a
solution-generating technique that, starting from a large class of solutions of
the wrapped-D5 system, yields the new solutions, and then proceed to study in
detail their properties, both in the IR and in the UV. We propose a simple
intuitive field theory interpretation of the rotation procedure and of the
meaning of our new solutions within the Papadopoulos-Tseytlin ansatz, in
particular in relation to the duality cascade in the Klebanov-Strassler
solution. The presence in the field theory of different VEVs for operators of
dimensions 2, 3 and 6 suggests that this is an important step towards the
construction of the string dual of a genuinely multi-scale (strongly coupled)
dynamical model.Comment: 37 pages, 7 figures. References added, version to appear in JHE
Holographic duals of SQCD models in low dimensions
We obtain gravity duals to supersymmetric gauge theories in two and three
spacetime dimensions with unquenched flavor. The supergravity solutions are
generated by a set of color branes wrapping a compact cycle in a Calabi-Yau
threefold, together with another set of flavor branes extended along the
directions orthogonal to the cycle wrapped by the color branes. We construct
supergravity backgrounds which include the backreaction induced by a smeared
set of flavor branes, which act as delocalized dynamical sources of the
different supergravity fields.Comment: 42 pages, 5 figures;v2: typos correcte
Optimal control models of the goal-oriented human locomotion
In recent papers it has been suggested that human locomotion may be modeled
as an inverse optimal control problem. In this paradigm, the trajectories are
assumed to be solutions of an optimal control problem that has to be
determined. We discuss the modeling of both the dynamical system and the cost
to be minimized, and we analyze the corresponding optimal synthesis. The main
results describe the asymptotic behavior of the optimal trajectories as the
target point goes to infinity
The Non-SUSY Baryonic Branch: Soft Supersymmetry Breaking of N=1 Gauge Theories
We study a non-supersymmetric deformation of the field theory dual to the
baryonic branch of Klebanov-Strassler. Using a combination of analytical
(series expansions) and numerical methods we construct non-supersymmetric
backgrounds that smoothly interpolate between the desired UV and IR behaviors.
We calculate various observables of the field theory and propose a picture of
soft breaking by gaugino masses that is consistent with the various
calculations on the string side.Comment: 32 pages plus many appendixes. One figur
BPS dyons and Hesse flow
We revisit BPS solutions to classical N=2 low energy effective gauge
theories. It is shown that the BPS equations can be solved in full generality
by the introduction of a Hesse potential, a symplectic analog of the
holomorphic prepotential. We explain how for non-spherically symmetric,
non-mutually local solutions, the notion of attractor flow generalizes to
gradient flow with respect to the Hesse potential. Furthermore we show that in
general there is a non-trivial magnetic complement to this flow equation that
is sourced by the momentum current in the solution.Comment: 25 pages, references adde
De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development
Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD
- …
