51 research outputs found

    Use of surface plasmon resonance for the measurement of low affinity binding interactions between HSP72 and measles virus nucleocapsid protein

    Get PDF
    The 72 kDa heat shock protein (HSP72) is a molecular chaperone that binds native protein with low affinity. These interactions can alter function of the substrate, a property known as HSP-mediated activity control. In the present work, BIAcore instrumentation was used to monitor binding reactions between HSP72 and naturally occurring sequence variants of the measles virus (MV) nucleocapsid protein (N), a structural protein regulating transcription/replication of the viral genome. Binding reactions employed synthetic peptides mimicking a putative HSP72 binding motif of N. Sequences were identified that bound HSP72 with affinities comparable to well-characterized activity control reactions. These sequences, but not those binding with lesser affinity, supported HSP72 activity control of MV transcription/replication. BIAcore instrumentation thus provides an effective way to measure biologically relevant low affinity interactions with structural variants of viral proteins

    Gaining Greater Insight into HCV Emergence in HIV-Infected Men Who Have Sex with Men: The HEPAIG Study

    Get PDF
    OBJECTIVES: The HEPAIG study was conducted to better understand Hepatitis C virus (HCV) transmission among human immuno-deficiency (HIV)-infected men who have sex with men (MSM) and assess incidence of HCV infection among this population in France. METHODS AND RESULTS: Acute HCV infection defined by anti-HCV or HCV ribonucleic acid (RNA) positivity within one year of documented anti-HCV negativity was notified among HIV-infected MSM followed up in HIV/AIDS clinics from a nationwide sampling frame. HIV and HCV infection characteristics, HCV potential exposures and sexual behaviour were collected by the physicians and via self-administered questionnaires. Phylogenetic analysis of the HCV-NS5B region was conducted. HCV incidence was 48/10 000 [95% Confidence Interval (CI):43-54] and 36/10 000 [95% CI: 30-42] in 2006 and 2007, respectively. Among the 80 men enrolled (median age: 40 years), 55% were HIV-diagnosed before 2000, 56% had at least one sexually transmitted infection in the year before HCV diagnosis; 55% were HCV-infected with genotype 4 (15 men in one 4d-cluster), 32.5% with genotype 1 (three 1a-clusters); five men were HCV re-infected; in the six-month preceding HCV diagnosis, 92% reported having casual sexual partners sought online (75.5%) and at sex venues (79%), unprotected anal sex (90%) and fisting (65%); using recreational drugs (62%) and bleeding during sex (55%). CONCLUSIONS: This study emphasizes the role of multiple unprotected sexual practices and recreational drugs use during sex in the HCV emergence in HIV-infected MSM. It becomes essential to adapt prevention strategies and inform HIV-infected MSM with recent acute HCV infection on risk of re-infection and on risk-reduction strategies

    Alteration of Blood–Brain Barrier Integrity by Retroviral Infection

    Get PDF
    The blood–brain barrier (BBB), which forms the interface between the blood and the cerebral parenchyma, has been shown to be disrupted during retroviral-associated neuromyelopathies. Human T Lymphotropic Virus (HTLV-1) Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a slowly progressive neurodegenerative disease associated with BBB breakdown. The BBB is composed of three cell types: endothelial cells, pericytes and astrocytes. Although astrocytes have been shown to be infected by HTLV-1, until now, little was known about the susceptibility of BBB endothelial cells to HTLV-1 infection and the impact of such an infection on BBB function. We first demonstrated that human cerebral endothelial cells express the receptors for HTLV-1 (GLUT-1, Neuropilin-1 and heparan sulfate proteoglycans), both in vitro, in a human cerebral endothelial cell line, and ex vivo, on spinal cord autopsy sections from HAM/TSP and non-infected control cases. In situ hybridization revealed HTLV-1 transcripts associated with the vasculature in HAM/TSP. We were able to confirm that the endothelial cells could be productively infected in vitro by HTLV-1 and that blocking of either HSPGs, Neuropilin 1 or Glut1 inhibits this process. The expression of the tight-junction proteins within the HTLV-1 infected endothelial cells was altered. These cells were no longer able to form a functional barrier, since BBB permeability and lymphocyte passage through the monolayer of endothelial cells were increased. This work constitutes the first report of susceptibility of human cerebral endothelial cells to HTLV-1 infection, with implications for HTLV-1 passage through the BBB and subsequent deregulation of the central nervous system homeostasis. We propose that the susceptibility of cerebral endothelial cells to retroviral infection and subsequent BBB dysfunction is an important aspect of HAM/TSP pathogenesis and should be considered in the design of future therapeutics strategies

    HTLV-1-induced leukotriene B4 secretion by T cells promotes T cell recruitment and virus propagation.

    Full text link
    The human T-lymphotropic virus type 1 (HTLV-1) is efficiently transmitted through cellular contacts. While the molecular mechanisms of viral cell-to-cell propagation have been extensively studied in vitro, those facilitating the encounter between infected and target cells remain unknown. In this study, we demonstrate that HTLV-1-infected CD4 T cells secrete a potent chemoattractant, leukotriene B4 (LTB4). LTB4 secretion is dependent on Tax-induced transactivation of the pla2g4c gene, which encodes the cytosolic phospholipase A2 gamma. Inhibition of LTB4 secretion or LTB4 receptor knockdown on target cells reduces T-cell recruitment, cellular contact formation and virus propagation in vitro. Finally, blocking the synthesis of LTB4 in a humanized mouse model of HTLV-1 infection significantly reduces proviral load. This results from a decrease in the number of infected clones while their expansion is not impaired. This study shows the critical role of LTB4 secretion in HTLV-1 transmission both in vitro and in vivo

    Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air

    No full text
    International audienceThe total oxidation of trichloroethylene (TCE) in air at low relative humidity (RH = 10%) in the presence of CO2 (520 ppmv) was investigated in function of energy density using an atmospheric pressure negative DC luminescent glow discharge combined with a cryptomelane catalyst positioned downstream of the plasma reactor at a temperature of 150 °C. When using Non-Thermal Plasma (NTP) alone, it is found a low COx (x = 1–2) yield in agreement with the detection of gaseous polychlorinated by-products in the outlet stream as well as ozone which is an harmful pollutant. Introduction of cryptomelane enhanced trichloroethylene removal, totally inhibited plasma ozone formation and increased significantly the COx yield. The improved performances of the hybrid system were mainly ascribed to the total destruction of plasma generated ozone on cryptomelane surface to produce active oxygen species. Consequently these active oxygen species greatly enhanced the abatement of the plasma non-reacted TCE and completely destroyed the hazardous plasma generated polychlorinated intermediates. The facile redox of Mn species associated with oxygen vacancies and mobility as well as the textural properties of the catalyst might also contribute as a whole to the efficiency of the process
    corecore